NORDIC VOLCANOLOGICAL INSTITUTE 8204 UNIVERSITY OF ICELAND # DEFORMATION MEASUREMENT IN THE HENGILL REGION INITIAL MEASUREMENT IN 1979 by Ulf Sundquist and Eysteinn Tryggvason Reykjavik 1982 # DEFORMATION MEASUREMENT IN THE HENGILL REGION INITIAL MEASUREMENT IN 1979 by Ulf Sundquist and Eysteinn Tryggvason Reykjavik 1982 #### INTRODUCTION The Hengill central volcano lies within the West Rift Zone of Iceland, which extends from the Reykjanes peninsula to the Langjökull glacier in west-central Iceland. It also lies at or very near the junction between the West Rift Zone and the South Iceland Seismic Zone (Fig 1). A prominent fissure swarm extends from Selvogsheiði, south west of Hengill, across Hengill and Þingvellir towards Langjökull. The recent volcanism in Hengill is closely related to this fissure swarm, and the high frequency of earthquakes in the area is also believed to be associated with the fissure swarm. Fig. 1. Map of southwest Iceland showing the volcanic and seismic zones in the area. SE=Selvogsheiöi. The area of investigation extends from Pingvallavatn in the north to Hellisheiði and Hveragerði in the south, and from Mosfellsheiði and Svinahraun in the west to the Sog river in the east. The most active part of this area with respect to the recent volcanism and faulting is a zone roughly 3 km wide extending from Hestvík to Stóra Reykjafell (Fig 2). The Hengill central volcano is a topographic high, reaching 800 m elevation. It consists of pleistocene and recent volcanic products mostly of basaltic composition. The most recent volcanism is less than 2000 years old (Sæmundsson K, 1962) A large high temperature geothermal field is located in the Hengill area and drillings have shown base temperature of about 300° C (Tómasson J et al, 1974, Steingrímson et al, 1979). The recent tectonics is related to the fissure swarm. Normal faults with recent displacement exceeding 100 m, are found in the nothern part of the area (Jórukleif). Otherwise, the area is characterized by parallel fault scarps and graben with strikes $N30^{\circ}$ to $N35^{\circ}E$ and eruption fissures and hyaloclastite ridges of same strike. The geology of the Hengill area has been described in details by Einarsson (1960a, 1960b) and Sæmundsson (1962, 1965, 1967a, 1967b) and we wish to refer to these papers for futher information on the region. Fig. 2. Map showing the geodetic networks of Hengill, established during July to December 1979. Names of the leveling stations: D=Draugatjörn, O=Orusthólshraun, N=Nesjavellir. Map from Saemundsson (1967). #### CONSTRUCTION OF THE GEODETIC NETWORK The investigation of ground deformation includes measurements of both horizontal and vertical components of the deformation. The horizontal component is observed by repeated measurements with a geodimeter over a number of lines between permanent bench marks. The vertical component is observed by repeated leveling along several short profiles. Two networks have been established for distance measurements, a northern network covering the area between Hæðir and the river Sog immediately to the south of lake Þingvallavatn and a southern network between Svínahraun and Hveragerði, south of Hengill. These networks are shown in details on figure 3. The leveling profiles consist of rows of bench marks, permanently fastened in solida lava. These bench marks form six leveling lines, each 300-480 m long with 7 to 11 bench marks. Two leveling stations, Draugatjörn and Orusthólshraun, have two lines each forming an L configuration. The station Nesjavellir consists of two lines, perpendicular to each other but seperated by a distance of 1400 m. The profiles lie roughly perpendicular or parallel to fault scarps and fissures. The approximate locations of the leveling profiles are shown on figure 2 and the profiles are plotted in detail on figure 4 to 6. The coordinates are given in table 1. #### CALCULATION OF DISTANCE MEASUREMENT The instrument used in the distance measurements are a geodimeter model AGA 6BL and a theodolite model Wild T2. Fig. 3. Schematic maps showing the geodimeter networks in the Hengill area. The main roads and the southern shore of the lake ingvallavatn are shown. The circles indicate bench marks and the lines between between bench marks show measured distances. The observed distance is corrected for temperature and pressure. The corrected distance between the geodimeter and mirror is projected down to the station marks (slope distance) and finally down to a sea-level of the reference ellipsoid, using equations given by Tryggvason (1978). Those formulas use the vertical angle between theodolite and target. This angle is measured at the geodimeter station and is reduced down to the bench mark. Calculating the elevation difference between two bench marks a general correction is made for refraction of light. Certain measured vertical angles in the nothern network showed big errors. This can partly be explained by long distance between theodolite and target. However, the main reason was probably the refraction of light. The formula used in the calculation of elevation difference assumes a general value of refraction, accurate enough during weather conditions with normal negative gradient of temperature. During the measurement in December the gradient was positive shortly after sunset and the temperature was unstable. Those conditions may give great refraction of light and large error in the measured elevation difference. The western part of the nothern network, where the biggest errors in vertical angles were observed, intersects the triangulation network established by Forverk H.F. This network has its base in the Reykjavik network. The altitudes of the stations, relative the Reykjavik network, have a maximum inaccuracy of 30 cm, but the elevation difference of the stations in the Nesjavellir area are only a few centimeters. It has been possible to use the network of Forverk to improve the elevations in our network. Some vertical angles had to be remeasured, and to improve the accuracy, the vertical angles were measured in both directions. The two measurements along the same line are made with shortest possible time difference and during stable weather conditions. This method, described in App 2, makes it possible to calculate an approximate value of the refraction of light. To obtain the correct value of refraction, simultaneous observations of the vertical angles are required. In the eastern part of the network no improvements have been made to the vertical angles. The results indicate that the errors of station elevations may reach a maximum value of 30 cm, which is not significant when calculating the sea-level distance. The southern network is measured during late summer and temperature measurements indicate that refraction conditions were normal. Further the coordinates of the bench marks have been calculated. When all sides in a triangle are measured, the method described in App 3 can be used. If calculation of coordinates from distance measurements alone are impossible, horizontal angles measured with theodolite have been used. This method does not have the same accuracy as that based on distance measurements only. The coordinates are given in Table 3, where the Transverse Mercator System has been used with the Gauss-Krüger projection equations (see Appendix 4). #### LEVELING PROCEDURES The instruments used are a Wild N-3 level, a good sturdy tripod and two Kern invar leveling rods. The optical micrometer of the level allows readings to the nearest 1/100 mm. The leveling rods have two scales, one is displaced 296.25 cm relative to the other. This factory specified displacement was checked by comparing all simultaneous readings of the two scales in the present work. The average value of the observed scale displacement was found to be 296.251 cm. The leveling rods are placed on two adjacent bench marks during observation, and the tripod with the level is placed between the rods at equal distance from both rods. First reading is taken on the lower scale on the backward rod, then on lower and higher scale on the foreward rod and finally on the higher scale of the backward rod. This makes one observation. Three such observations are usually made without moving level or rods. If any of the three observations gives an elevation difference of more than 0.1 mm from the average of all three observations, one or two additional observations are taken. Also, if the readings of the two scales of a measuring rod indicate a displacement of the scales which deviates more than 0.1 mm from the average value, additional observation is taken. When observation of one bench mark interval has been completed, the backward rod is moved to a bench mark in a foreward position and a new level station is selected, at equal distance from both rods. When a leveling profile has been completed from one end to the other end, the whole measuring procedure is repeated, going along the profile in opposite direction. If the elevation difference of two adjacent bench marks, as observed by the two levelings, differs by more than 0.1 mm, the leveling is repeated for this bench mark interval. #### CALCULATION OF LEVELING DATA The purpose of the calculation is to find the most probable value of the elevation difference of the bench marks, and to obtain measure of the accuracy of this elevation difference. There are several observations, usually six, of elevation differences of two adjacent bench marks. These observations are of varying quality, and we wish to reduce the influence of "bad" observations on the calculated elevation difference. The quality of individual observations can be estimated from the observed difference of the readings on the two scales of the measuring rod. This difference should be 296.251 cm, and if the observed difference deviates from this value by more than 0.01 cm, the observation is judged as imperfect. However, these imperfect observations are too many to cancel them completely, so a weight factor is calculated as follows: $$W_1 = 10 \ 000/(\Delta_A^2 \cdot \Delta_B^2)$$ where Δ_A and Δ_B are the deviations of the observed scale displacements from the correct value in units of 1/100 mm for the two leveling rods. If weight is calculated as greater than 1.0 then we use 1.0 for the weight. This weight W_1 , is used to find the first average value H_1 for the elevation difference of two adjacent bench marks. A second weight, W_2 , is calculated from the deviation of each observation from the first average value, as follows: $$W_2 = 100/\Delta_C^2$$ where $\Delta_{\rm C}$ is the deviation, in units of 1/100 mm, of a single observation of elevation difference, from the first average, H₁. A final value of the elevation difference is calculated by using the weight factor \mathbf{W}_2 on the individual observations. The standard error of elevation difference of adjacent bench marks ($\epsilon_{\text{s.e}}$) is calculated from standard deviation (σ) of individual observations from the accepted average as follows: $$\varepsilon_{\text{s.e}} = \sigma/\sqrt{N}$$ where N is the number of individual observations. The total error of a measured profile consisting of n+1 bench marks is then calculated as: $$\varepsilon_{\text{tot}} = \sum_{i=1}^{n} \sqrt{(\varepsilon_{\text{s.e}})_{i}^{2}}$$ #### TABLE 1 #### COORDINATES OF THE LEVELING LINES The bench marks have been measured with a theodolite from a number of stations in order to calculate the coordinates of the leveling lines. The coordinates of these base stations are calculated from measurements done with a geodimeter or a theodolite. The stations in the geodimeter networks have been used. ## A Draugatjörn | Base | stations: | X(N), m | Y(E), m | |-------|---------------------------------|--|---------------------------------------| | | LM 3180
NE 79030
NE 80037 | 7105576.28
7105458.917
7105601.189 | 479315.72
479653.563
479510.791 | | Coord | dinates of d | the leveling lines: | | ## Coordinates of the leveling lines: | 2777 | 70074 | | | |------|-------|-------------|------------| | | 79074 | 7105576.465 | 479315.695 | | NE | 79021 | 7105542.212 | 479353.196 | | NE | 79022 | 7105510.391 | 479382.555 | | NE | 79023 | 7105483.342 | 479423.377 | | NE | 79024 | 7105453.831 | 479462.285 | | NE | 79025 | 7105417.175 | 479496.028 | | NE | 79026 | 7105379.455 | 479523.842 | | NE | 79027 | 7105345.971 | 479550.593 | | NE | 79028 | 7105378.820 | 479599.599 | | NE | 79029 | 7105421.634 | 479624.459 | | NE | 79030 | 7105458.917 | 479653.563 | | NE | 79031 | 7105495.333 | 479689.734 | | NE | 79032 | 7105540.111 | 479710.646 | | NE | 79033 | 7105571.523 | 479748.584 | | NE | 79034 | 7105599.479 | 479786.050 | | NE | 79035 | 7105630.585 | 479823.473 | | NE | 79036 | 7105680.405 | 479825.197 | | NE | 79037 | 7105713.400 | 479862.641 | | NE | 79038 | 7105311.535 | 479605.772 | | NE | 79039 | 7105283.453 | 479635.240 | | | | | | Fig. 4. The position of the bench marks in the Draugatjörn leveling lines. # B Orusthólshraun | NE | 79080
80038
80039 | X(N), m 7103215.219 7104618.852 7104769.483 | Y(E), m
480907.450
483098.345
483324.348 | |--|---|--|--| | Coordina | tes of the | leveling lines: | | | NE
NE
NE
NE
NE
NE
NE
NE | 79059
79060
79061
79062
79063
79064
79065
79066
79067
79068
79069
79070
79071
79072
79073 | 7104546.368
7104531.482
7104532.305
7104546.583
7104540.741
7104507.159
7104496.786
7104460.063
7104418.311
7104378.914
7104341.646
7104295.487
7104295.487
7104249.636
7104200.511
7104135.595 | 483394.470
483353.529
483300.173
483264.600
483221.470
483169.128
483102.685
483132.526
483156.968
483183.928
483188.065
483206.848
483193.021
483210.990 | Fig. 5. The position of the bench marks in the Orust-hólshraun leveling lines. # C Nesjavellir | <u> </u> | | | |----------------------|----------------------------|--------------------------| | Base stations: | X(N), m | Y(E), m | | NE 79042 | 7112284.195 | 487633.747 | | NE 79050
NE 79088 | 7113619.794
7113473.661 | 488204.653
488889.928 | | NE 80040 | 7112262.106 | 487276.386 | | NE 80041 | 7113103.202 | 488273.982 | | Coordinates of the | e leveling lines: | | | NE 79040 | 7112359.440 | 487687.064 | | NE 79041 | 7112318.953 | 487662.560
487633.747 | | NE 79042
NE 79043 | 7112284.195
7112237.324 | 487606.705 | | NE 79044 | 7112199.930 | 487578.308 | | NE 79045 | 7112170.582 | 487563.319 | | NE 79046
NE 79047 | 7112119.306
7112077.324 | 487535.838
487505.671 | | NE 79047 | 7112046.296 | 487484.004 | | NE 79049 | 7113629.327 | 488155.596 | | NE 79050
NE 79051 | 7113619.794
7113591.465 | 488204.653
488249.393 | | NE 79052 | 7113561.680 | 488283.743 | | NE 79053 | 7113560.287 | 488333.303 | | NE 79054
NE 79055 | 7113552.043
7113543.837 | 488381.112
488426.874 | | NE 79056 | 7113540.682 | 488467.847 | | NE 79057 | 7113531.836 | 488503.392 | | NE 79058 | 7113495.860 | 488528.266 | | - N | IE 79050 🌦 | 008 - 31,304 | | -7113400 | | | | -7113400 | | NE 79088 | | with error | NE 80041 △ | | | -7113000 | 1/ | | | Nesjavellir | . // | | | | • | | | -7112600 | | | | | | | | | " | | Fig. 6. Schematic map showing the Nesjavellir area. Triangles indicate base stations and dots indicate the bench marks of the leveling lines. NE 80040 A NE 79042 LEVELING LINES AT DRAUGATJÖRN HENGILL, JULY 1979 | Stat | ions | Accumul ele | evation | Elevation cm | difference | |--|--|---|--|---|--| | NE 79074
NE 79021
NE 79022
NE 79023
NE 79024
NE 79025
NE 79026
NE 79027
NE 79038 | NE 79074
NE 79021
NE 79022
NE 79023
NE 79024
NE 79025
NE 79026
NE 79027
NE 79038
NE 79039 | 0.000
49.485
87.888
- 186.174
- 223.955
- 170.079
- 291.339
- 225.553
- 342.831
- 241.095 | +000
+003
+004
+005
+006
+006
+007
+008
+008 | 49.485
38.404
98.286
37.781
53.877
- 121.260
65.786
- 117.278
101.736 | +003
+002
+004
+002
+002
+003
+003
+002 | | NE 79027
NE 79028
NE 79029
NE 79030
NE 79031
NE 79032
NE 79033
NE 79034
NE 79035
NE 79036 | NE 79027
NE 79028
NE 79029
NE 79030
NE 79031
NE 79033
NE 79034
NE 79035
NE 79036
NE 79037 | - 225.553
- 387.339
- 462.490
- 524.594
- 521.155
- 317.715
- 336.277
- 298.318
- 329.606
- 382.984
- 363.364 | +007
+008
+008
+008
+009
+010
+011
+011
+011 | - 161.786
75.152
62.104
3.440
203.440
18.563
37.959
31.288
53.379
19.620 | +001
+003
+003
+004
+003
+002
+004
+002
+001 | ## Note TABLE 2A The elevation is given in cm and with error calculated with the standard error method. # LEVELING LINES AT DRAUGATJÖRN HENGILL, AUGUST 1980 | Stations | Accumul el
cm | evation | Elevation cm | difference | |--|---|--|---|--| | NE 79074 NE 7
NE 79021 NE 7
NE 79022 NE 7
NE 79023 NE 7
NE 79024 NE 7
NE 79025 NE 7
NE 79026 NE 7
NE 79027 NE 7 | 79074
79021
79022
79023
79023
79024
79024
79025
79025
79026
79027
79027
79038
79038
79039
0.000
49.494
79023.946
79025
223.946
79025
291.312
225.555
79038
79039
241.127 | +000
+002
+003
+004
+005
+006
+006
+007 | 49.494
38.386
98.292
37.775
53.893
- 121.258
65.757
- 117.280
101.708 | +002
+002
+002
+003
+003
+002
+002
+001 | | NE 79027 NE 7
NE 79028 NE 7
NE 79029 NE 7
NE 79030 NE 7
NE 79031 NE 7
NE 79032 NE 7
NE 79033 NE 7
NE 79034 NE 7 | 79027 - 225.555
79028 - 387.352
79029 - 462.523
79030 - 524.625
79031 - 521.184
79032 - 317.739
79033 - 336.314
79034 - 298.354
79035 - 329.658
79036 - 383.068
79037 - 363.438 | +006
+006
+007
+007
+007
+008
+008
+008
+009 | - 161.797
75.171
62.102
3.441
203.445
18.575
37.960
31.304
53.410
19.630 | +002
+002
+002
+001
+002
+003
+001
+003
+002 | TABLE 2B LEVELING LINES ON ORUSTHOLSHRAUN, AUGUST 1979 | Stations | Accumul elevation cm | Elevation difference | |---|---|---| | NE 79059 NE 79059 NE 79060 NE 79060 NE 79061 NE 79061 NE 79062 NE 79062 NE 79063 NE 79064 NE 79064 NE 79065 | 0.000 +000
29.012 +002
94.059 +003
90.979 +004
- 125.849 +005
52.535 +005
31.189 +006 | 29.012 +002
65.046 +002
3.079 +002
34.870 +003
73.314 +002
21.345 +004 | | NE 79064 NE 79064 NE 79066 NE 79066 NE 79067 NE 79067 NE 79068 NE 79068 NE 79069 NE 79070 NE 79070 NE 79071 NE 79071 NE 79072 NE 79072 | 52.535 +005
66.941 +005
95.262 +005
8.377 +006
13.727 +007
31.558 +007
25.796 +007
71.541 +007
4.290 +007 | 119.476 +002
28.321 +002
- 103.639 +001
5.351 +004
17.832 +002
57.354 +002
45.746 +002
67.251 +002 | | LEVELING LINES ON OF | RUSTHÖLSHRAUN, AUGUST | 1980 | | NE 79059 NE 79059 NE 79060 NE 79060 NE 79061 NE 79061 NE 79062 NE 79062 NE 79063 NE 79063 NE 79064 NE 79064 NE 79065 | 0.000 +000
29.040 +001
94.068 +002
91.008 +003
- 125.883 +003
52.568 +004
31.199 +005 | 29.040 +001
65.028 +001
3.059 +002
34.875 +001
73.315 +002
31.359 +003 | | NE 79064 NE 79064 NE 79066 NE 79066 NE 79067 NE 79067 NE 79068 NE 79068 NE 79069 NE 79070 NE 79070 NE 79071 NE 79071 NE 79072 NE 79072 NE 79073 | 52.568 +004
66.930 +004
95.236 +005
8.410 +005
13.728 +006
31.564 +006
25.781 +007
71.538 +007
4.227 +007 | 119.498 +003
28.306 +003
- 103.646 +002
5.319 +002
17.836 +002
57.345 +002
45.757 +002
67.311 +001 | TABLE 2C LEVELING LINES IN NESJAVELLIR HENGILL, OCTOBER 1979 | Stations | Accumul elevation cm | Elevation difference cm | |--|---|--| | NE 79040 NE 79040 NE 79041 NE 79041 NE 79042 NE 79042 NE 79043 NE 79043 NE 79044 NE 79044 NE 79045 NE 79045 NE 79046 NE 79046 NE 79047 NE 79047 | 0.000 +000
135.902 +002
237.299 +003
395.981 +004
569.489 +005
706.544 +005
882.099 +006
1008.083 +006
1087.588 +006 | 135.902 +002
101.397 +002
158.683 +002
173.508 +003
137.055 +002
175.555 +002
125.984 +002
79.505 +001 | | NE 79049 NE 79049 NE 79050 NE 79050 NE 79051 NE 79051 NE 79052 NE 79052 NE 79053 NE 79053 NE 79054 NE 79054 NE 79055 NE 79056 NE 79056 NE 79056 NE 79057 NE 79057 NE 79058 | 0.000 +000
35.785 +005
6.104 +007
67.480 +007
52.523 +007
- 150.315 +008
- 214.311 +009
- 312.773 +010
- 314.800 +010
- 302.850 +010 | - 35.785 +005
41.890 +005
- 73.585 +002
14.957 +002
- 97.792 +003
- 63.996 +004
- 98.461 +005
2.027 +003
11.950 +003 | | LEVELING LINE IN NES | JAVELLIR HENGILL, DEC | CEMBER 30, 1979 | | NE 79049 NE 79049 NE 79050 NE 79050 NE 79051 NE 79051 NE 79052 NE 79052 NE 79053 NE 79053 NE 79054 NE 79054 NE 79055 NE 79055 NE 79056 NE 79056 NE 79057 NE 79057 | 0.000 +000
35.873 +002
6.010 +005
67.466 +006
52.660 +007
- 150.478 +008
- 214.486 +009
- 312.935 +009
- 314.944 +010
- 303.028 +010 | - 35.873 +002
41.883 +005
- 73.476 +004
14.806 +002
- 97.818 +004
- 64.009 +004
- 98.449 +004
2.009 +002
11.916 +001 | # LEVELING LINES IN NESJAVELLIR HENGILL, JULY 1980 | Stations | Accumul elevation cm | Elevation difference cm | |---|---|--| | NE 7907 NE 79040 NE 7904 NE 79041 NE 7904 NE 79042 NE 7904 NE 79043 NE 7904 NE 79044 NE 7904 NE 79045 NE 7904 NE 79046 NE 7904 NE 79047 NE 7904 | 1 135.915 +002
2 237.291 +003
3 395.964 +004
4 569.442 +004
5 706.516 +005
6 882.056 +005
7 1008.019 +005 | 135.915 +002
101.376 +002
158.673 +003
173.478 +002
137.074 +002
175.540 +002
125.963 +002
79.508 +002 | | NE 79049 NE 79049 NE 79050 NE 79050 NE 79051 NE 79051 NE 79052 NE 79053 NE 79053 NE 79054 NE 79055 NE 79055 NE 79056 NE 79056 NE 79057 NE 79057 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - 35.761 +002
41.919 +002
- 73.591 +003
14.996 +002
- 97.799 +003
- 63.999 +002
- 98.478 +002
2.041 +002
11.976 +002 | TABLE 3 Slope distances, elevation differences and sea-level distances in the Hengill network, July-December 1979. | Date | Stations | Slope
distance
m | Elevation
difference
m | Horizontal sea-level distance | |--------------------------|--|--|---|--| | July 20 | A - NE 79075
A - NE 79076
A - NE 79080 | 6351.016
4832.673
7437.966 | 112.94
108.82
206.99 | 6349.653
4831.177
7434.605 | | Aug 15 | A - NE 79081
NE 79081 - NE 79079
NE 79081 - NE 79080
NE 79081 - LM 3180 | 6937.363
5903.972
2748.576 | 265.67
-149.77
- 58.30 | 6931.807
5901.614
2747.725 | | Aug 16 | NE 79080 - NE 79079
NE 79080 - NE 79082
NE 79080 - LM 3180 | 3525.549
3598.467
2854.675
2858.718 | -309.60
- 91.43
-251.30 | 3511.701
3597.032
2847.479 | | Sep 3 | NE 79081 - NE 79082 | 4456.316 | | | | Oct 13 | NE 79081 - NE 79084
FV 338 - FV 337
FV 338 - FV 342 | 2808.709
2146.115
2296.438 | -113.14
- 29.78
249.54 | 2806.204
2145.856
2282.735 | | Oct 14 | LM 91 - FV 337
LM 91 - FV 342
LM 91 - TU 2 | 3494.348
2791.665
3448.882 | -233.96
45.51
43.19 | 3486.371
2791.122
3448.398 | | Oct 15 | TU 2 - FV 342
FV 337 - FV 342
FV 337 - NE 79050
NE 79088 - FV 337
NE 79088 - FV 342 | 1726.343
3651.048
4155.074
4032.798
3423.565 | 2.23
279.32
5.84
- 14.52
264.80 | 1726.229
3640.188
4154.976
4032.679
3413.156 | | Oct 20
Nov 1
Nov 7 | NE 79088 - NE 79050
NE 79050 - FV 342
FV 337 - LM 3225
NE 79089 - FV 337
NE 79089 - NE 79050
NE 79089 - LM 3219 | 700.775
2900.764
5007.343
4706.154
4958.332
2454.991 | 8.68
273.48
25.30
- 98.44
- 92.60
169.64 | 700.704
2887.716
5007.159
4704.984
4957.317
2448.964 | | Nov 8 | NE 79050 - LM 3219
LM 3225 - NE 79089
LM 3225 - NE 79090
LM 3225 - NE 79091
NE 79091 - NE 79089
NE 79091 - NE 79090 | 3193.589
3067.352
5874.125
3558.498
5203.240
4350.133 | 262.86
73.15
72.9
5.7
67.45
67.2 | 3182.624
3066.382
5873.486
3558.399
5202.635
4349.474 | | Nov 10 | FV 338 - NE 79099
FV 338 - NE 79091 | 6602.515 | 68.66 | 6601.946 | | Nov 11 | NE 79089 - TU 1
NE 79090 - TU 1 | 4273.887
4139.462
4861.360 | 210.05
210.3 | 4268.493
4133.894 | | Dec 28 | NE 79090 - NE 79089 FV 330 - LM 3219 FV 330 - NE 79050 FV 330 - FV 322 NE 79088 - FV 322 | 3804.505
2729.410
2027.129
3188.634 | 0.25
96.74
-166.01
128.41
285.74 | 4861.178
3803.060
2724.259
2022.939
3175.657 | TABLE 4 COORDINATES IN THE HENGILL NETWORKS Gauss-Krüger projection | Stations | X(N)
m | Y(E)
m | Elevations
m | |---|--|---|---| | NOTHERN NETW | ORK | | | | NE 79050
NE 79088
NE 79089
NE 79090
NE 79091
FV 322
FV 330
FV 337
FV 342
LM 91
LM 3219
LM 3225
TU 1
TU 2 | 7113619.794 7113473.661 7113765.475 7110704.063 7114850.905 7112174.409 7110961.033 7117325.593 7117906.457 7116065.161 7118842.610 7112384.148 7116239.35 7109500.728 7116034.827 | 488204.653
488889.928
493159.835
496935.921
498247.985
485992.212
487610.859
490083.721
488017.980
486668.712
486944.700
481137.621
494971.64
491981.041
484942.746 | 146.35
155.03
238.95
238.7
171.5
440.77
312.36
140.51
170.29
419.83
374.4
409.1
165.8
449.0
417.6 | | SOUTHERN NET | WORK | | | | A NE 79075 NE 79076 NE 79079 NE 79080 NE 79081 NE 79082 NE 79084 LM 3179 LM 3180 | 7100364.903
7103041.682
7103215.219
7105200.368
7100768.442
7104896.169
7106966.84
7105576.28 | 487773.991
477314.587
480907.450
482807.250
482373.970
485596.917
476317.15
479315.72 | 304.57
417.51
413.39
420.30
511.75
570.05
407.4,409.6
451.17
243.51
260.45 | # Notes Tangent meridiane in the Mercator projection is 500000.0 through Selfoss, $21^{\circ}0^{\circ}W$ Greenwich. Base station for calculation of elevation in the nothern network is FV 337 and in the southern network LM 3180. Base station for calculation of coordinates in the nothern network is LM 3225 with direction toward NE 79090 and in the southern network stations LM 3179 and LM 3180 have been used. Description of bench marks in the geodimeter networks of Hengill: ## Explanation: LM Bench mark belonging to Landmælingar Islands FV Bench mark belonging to Forverk h.f., Reykjavik NE Bench mark belonging to Norræna Eldfjallastöðin TU Bench mark belonging to Technical University, Braunschweig, F.R.G If not otherwise stated in the text, the bench mark consists of a copper or another metal rod, which is fastened in a drilled whole in lava or hyaloclastic material by concrete. Above, or close to the bench mark stands a cairn, mostly of a small size. ## LM 91 Mosfellsheiði (Hæðir) An iron pipe approximately 3 m NW of the top cairn. The pipe is somewhat inclined and measuring is done from the centre of the top. ## LM 3180 Draugatjörn The bench mark lies about 5 m north of the road. Observe that close to this marker is another marker (NE 79074), which is used in leveling. #### LM 3219 Sandfell A copper marker in a small stone. A cairn with a wooden pole is placed over the marker, which is situated on the highest part of the mountain, close to the southern end. ## LM 3225 Lambhagi A copper marker in a small stone, A three armed stone pavement shows the place, which is on the west side of the highest part. ## FV 322 Dyrafjöll The marker is placed on a small rise on the "moberg" ridge which extends from Skeggi in a northerly direction, approximately 2500 m from the top of Skeggi. Close to it stands a red flag. ## FV 330 Ölfusvatnsskyggnir Marker in a stone, situated on the gentle slope towards the north, approximately 25 m east of the steep descent to Köldulaugargil. A white cloth and a red flag show the marker. ## FV 337 Stapi Marker approximately 40 m SE of the highest point on Stapi. Marked with a white cloth on the ground. #### FV 338 Simonarbrekka Marker on the southermost ridge of the road. The marker is placed approximately 2 m southwest of a big cairn. ## FV 342 Haitindur Marker on the east side of the top. Observe that it may cause some difficulties to get free sight to LM 91 and TU 2. ## NE 79050 Nesjavellir W Marker in lava approximately 0.5 m north of an E-W fissure about 50 m north of the road. This marker is also used in the leveling line. #### NE 79075 Alútur The marker is placed on a small hill on the Alútur ridge about 1 000 m SSE the top of Klóarfjall. The distinct hill is overgrown with white lichen. ## NE 79076 Reykjafell The marker is placed close to a small cairn. For exact position contact Halldor Olafsson. #### NE 79079 Lambafellshnúkur Marker in moberg. The marker is not placed on the highest part, but roughly 30-40 m lower, on a minor extending towards ENE. Some 10 m further north is another minor crest. Marked with a cairn. # NE 79080 Stóra-Reykjafell A bench mark in moberg on the northern part of the highest point. A cairn is placed over the bench mark. ## NE 79081 Skarðsmýrarfjall The bench mark is placed in moberg on a top approximately 1 250 m south of the highest part of Skardsmýrarfjall. The exact position is 20 m SE of the big top cairn in direction towards Surtsey. Marked with a small cairn. NE 79082 Lakakrókur Bench mark in lava on the plateau. Marked with a cairn on the bench mark. NE 79083 Hverahlið Bench mark in lava close to the plateau rim on a minor hill. The bench mark lies under a cairn with a wooden pole. NE 79084 Litla-Skarosmýrarfjall Bench mark in lava on the south-eastern part of the highest top. Marked with a small cairn NE 79088 Nesjavellir E Bench mark in lava approximately 1 m SW of a power line pole and about 15 m E of a big open fissure with north-south strike. Close to the bench mark is a small cairn. NE 79089 Ölfusvatnsfjall Bench mark in lava close to the steep slope towards west. The bench mark is placed under a small cairn about 5 m NNW of a large stone. ## NE 79090 Olfljötsfell (Gnipur) Bench mark in a minor lava stone in centre of the marking of the bench mark LM 3217. Some white painted stones show the location. ## NE 79091 Björgin Bench mark in a minor lava block in centre of the marking of LM 3224. The marker is placed on a minor grassed hill and a white cloth and some stones show the exact position. ## A Núpafjall An old foundation of concrete with four iron bars. The north-easterly bar is used for the measurements and the exact point is marked with a small dent. The foundation lies on a minor hill approximately $900 \text{ m N}10^{\circ}\text{E}$ from the highest part of Núpafjall and on the north side of a track. #### TU 1 Sülufell The bench mark is located on the top of the mountain under a big cairn. #### TU 2 Sköflungur The bench mark is located at the southern end of the highest crest, where a minor butress extends to east. The marker lies under a big cairn. ## SIMULTANEOUS RECIPROCAL OBSERVATIONS If vertical angles are measured at both ends of a line simultaneously, the refraction angles are almost identical. This method make it possible to calculate the angle of refraction. Fig. 7. The effect of refraction on vertical angles. If both zenith distances (vertical angles) $\mathbf{Z}_{\mathbf{A}}$ and $\mathbf{Z}_{\mathbf{B}}$ are measured, we have $$Z_A + Z_B + 2\alpha = 200^g + \gamma$$ where γ stands for central angle and α for angle of refraction. The correct zenith distance \overline{z}_A can be expressed $$Z_{A} = Z_{A} + \alpha = \frac{1}{2}Z_{A} - \frac{1}{2}Z_{B} + 100^{9} + \frac{1}{2}\gamma$$ The cosine theorm gives the elevation difference between the two points $$h = \sqrt{\{R^2 + L^2 + 2RLcos\overline{Z}_A\}} - R$$ #### CALCULATION OF COORDINATES There are several different methods to calculate coordinates. In a triangulation system, where all sides are measured with high accuracy, it is possible to use following method. The coordinates for A and B are known, as well as the distances from point A and B to the unknown point C. The cosine theorem gives: $$\cos V_A = (d_{AB}^2 + d_{AB}^2 - d_B^2) / (2d_A d_{AB}); \quad \alpha_A = \alpha_{AB} + V_A$$ The coordinates of point C can be expressed: $$x = x_A + d_A \cos \alpha_A$$ $y = y_A + d_A \sin \alpha_A$ $$x - x_A = d_A \cos(\alpha_{AB} + V_A) = d_A \cos\alpha_{AB} \cos V_A - d_A \sin\alpha_{AB} \sin V_A$$ $y - y_A = d_A \sin(\alpha_{AB} + V_A) = d_A \sin\alpha_{AB} \sin V_A - d_A \sin\alpha_{AB} \sin V_A$ $$d_A \cos V_A = x^* \qquad \cos\alpha_{AB} = (x_B - x_A)/d_{AB}$$ $$d_A \sin V_A = y^* \qquad \sin\alpha_{AB} = (y_B - y_A)/d_{AB}$$ Finally the coordinates of point C can be expressed: $$x = x_A + \{x^{(x_B - x_A) - y^{(y_B - y_A)}}/d_{AB}$$ $y = y_A + \{x^{(y_B - y_A) - y^{(x_B - x_A)}}/d_{AB}$ When calculating coordinates over a large area it is necessary to project lines on to a reference ellipsoid. It is convenient to consider the earth as a mathematical sphere, with a radius corresponding to average bending in the midle of the area. In this report a radius of 6388000 m has been used. This gives sufficient accuracy if the linear extent of the area does not exceed a few tenths of kilometers. Fig. 8. Projection of a line on a sphere. With symbols as i figure 8 the cosine theorem gives: $$cos\gamma = (R_A^2 + R_B^2 - L^2)/(2R_A^2R_B)$$ or $$\sin(\gamma/2) = \sqrt{(L^2 - \Delta h^2)/(4R_A^2R_B^2)} = SLD/2R,$$ where $\Delta h = R_A - R_B$ The length of the chord: SLD = $R\sqrt{(L^2 - \Delta h^2)/(R_A R_B)}$ The length of the curve: $L_b = 2R \arcsin(SLD/2R)$, which with series expansion can be expressed: $$L_{b} = SLD + SLD^{3}/24R^{2} + 3SLD^{5}/640R^{4}$$ In Iceland two methods of projection are used. The cylindrical projection is used by Landmælingar Islands and it has the advantage of minor correction comparing with a conic projection. In this report the cylindrical projection is used. One of the cylindrical projections is called the Mercator Projection, which in its normal form has the origin on the equator. Except near the equator this projection is of no general use, but is the basis of other more useful projections. In nothern countries the Transverse Mercator Projection is more useful. This projection uses a meridian as a great circle and tangent line and at this tangent line the scale distortion is zero. The generally adopted method of projecting the spheroid is the Gauss-Krüger projection. In the ordinary Transverse Mercator Projection the central meridian is a standard great circle along which there is no scale distortion. The small circles parallel to it are represented by vertical lines of the rectangular grid and thus there is a scale increase away from the central meridian. The projection from a spheroid to the projection plane needs an additional correction, expressed: $$\Delta L = \frac{L}{6R^2} \{ y_A^2 + y_A y_B + y_B^2 \} ,$$ where \mathbf{y}_{A} and \mathbf{y}_{B} are distances from the end points of line AB to the central meridian according to figure 9. R stands for the radius of the reference ellipsoid and L for the length of line AB. #### REFERENCES - Einarsson, Th., Geologie von Hellisheidi, Sonderveröffentlichungen des Geologischen Institutes der Universität Köln No. 5, pp. 1-55, 1960a. - Einarsson, Th., Þættir úr jarðfræði Hellisheiðar, Náttúrufræðingurinn 30, pp. 151-175, 1960b. - Steingrímsson, B. & V. Stefánsson, Nesjavellir. Hitastig og þrýstingur á jarðhitasvæðinu, Orkustofnun OS79032/JHD15, pp. 1-31, 1979. - Sæmundsson, K., Das Alter der Nesja-Lava (Südwest-Island), N. Jb. Geol. Paläont. Mh. 12, p. 650, 1962. - Sæmundsson, K., Ür sögu Þingvallavatns, Náttúrufræðingurinn 35, pp. 103-144, 1965. - Sæmundsson, K., An outline of the structure of SW-Iceland, Iceland and Mid-Ocean Ridges, Societas Scientiarum Islandica, Rit 38, pp. 151-161, 1967a. - Sæmundsson, K., Vulkanismus und Tektonik des Hengill-Gebietes in Südwest Island, Acta Naturalia Islandica, Vol. II, No. 7, pp. 1-105, 1967b. - Tómasson, J., K. Grönvold, H. Kristmannsdóttir & P. Thorsteinsson, Nesjavellir, Hola 5, Orkustofnun OSJHD23, pp. 1-23, 1974. - Tryggvason, E., Distance measurements in 1977 in the Krafla-Mývatn area and observed ground movements, Nordic Volcanological Institute 7810, pp. 1-47, 1978.