ARCTIS,

Regional Investigation of Arctic Snow chemistry: Results from the Icelandic expeditions, 1997-1999

Sigurður Reynir Gíslason, Matthildur Bára Stefánsdóttir, and Eydís Salome Eiríksdóttir RH-05-2000

> RAUNVÍSINDASTOFNUN HÁSKÓLANS Science Institute University of Iceland Dunhaga 3, 107 Reykjavík

March 2000

TABLE OF CONTENT

INTRODUCTION 4

GOAL OF THE ARCTIS PROJECT 5

DESCRIPTION OF THE ARCTIS PROJECT 5

SAMPLING METHODS 5

Selection of sampling sites (5)

Collection of snow cores (6)

Sample treatment in the laboratory (8)

SHIPMENT OF THE ARCTIS SAMPLE 10

ACKNOWLEDGMENTS 10

REFERENCES 10

TABLES 11

- Table 1. Snow samples from the Langjökull and Vatnajökull glaciers, 1997-1999. (12)
- Table 2. Temperature profile from the Langjökull and Vatnajökull glacier sampling sites, 1997 -1999. (13)
- Table 3. Density profile from the Langjökull glacier sampling site, 1998 and 1999. (14)
- Table 4. Winter precipitation, equivalent to rainfall, on the Langjökull glacier. (15)
- Table 5. Chemical analysis of snow samples from the Langjökull and Vatnajökull glacier, 1997 (16)
- Table 6. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analyzed at the Science Institute, Reykjavík Iceland and SGAB, Luleå, Sweden. (17)
- Table 7. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analyzed at the Canadian Geological Survey, Ottawa, Canada. (18)
- Table 8. Comparison of the results from the various analytical methods employed for the 1996-1997 winter precipitation on the Langjökull and Vatnajökull glaciers. (19)

Table 9. Comparison of the results from the various analytical methods employed for the 1998-1999 winter precipitation on the Langjökull glacier. (20)

FIGURES 21

- Figure 1. Selection of sampling site. (22)
- Figure 2. PICO lightweight hand coring auger driven by a Honda generator was used to drill exploratory holes, at the corners of a 40 m by 40 m square corresponding to sites 1, 3, 5, and 7 on fig. 1. (22)
- Figure 3. The PICO lightweight hand coring auger fully extended. (23)
- Figure 4. The clean core was taken from a trench that was dug in the middle of the square upwind from cars and equipment. (23)
- Figure 5. The PC corer was pushed/rotated vertically down into the snow layer, about five cm behind the clean vertical surface of the trench. (24)
- Figure 6. Snow sampling with the "clean" PC corer. (24)
- Figure 7. Snow sampling with the "clean" PC corer. Note the location of the PC plate. (25)
- Figure 8. Cleaning the face of the wall with the PC plate, wearing plastic gloves. (25)
- Figure 9. A piece of snow and volcanic ash from the Vatnajökull site. (26)
- Figure 10. A piece of snow and volcanic ash from the Vatnajökull site before melting in the laboratory. (26)
- Figure 11. Core from the PICO lightweight hand coring auger, showing the ash layer from the October Gjálp subglacial eruption 1996. (27)

APPENDIX 1; FIELD SHEETS AND DESCRIPTION OF SNOW CORES. 28

- 1. Field sheet for ARCTIS sample nr. 34 from the Langjökull glacier. (29)
- 2. Field sheet for ARCTIS sample nr. 35 from the Vatnajökull glacier. (30)
- 3. Field sheet for ARCTIS sample nr. 36 from the Vatnajökull glacier. (31)
- 4. Field sheet for ARCTIS sample nr. 37 from the Vatnajökull glacier. (32)
- 5. Detailed description of PICO core nr. 3(I) from the Vatnajökull glacier. (33)
- 6. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1998. (34)
- 7. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1999. (36)
- APPENDIX 2; Report on the measurements done by the "Time Of Flight Indcuctively Coupled Plasma Mass Spectrometer" (TOF-ICP-MS). By János Fuscó. 37

INTRODUCTION

The Arctic is one of the most remote region of any extent in the populated and industrialized northern hemisphere. By determining snow composition and deposition at a regional scale on one occasion, one may obtain a picture of the extent of long-range atmospheric transport and deposition of pollutants. This type of study could in effect "take the pulse" of the Earth when it comes to atmospheric pollution. If such survey is repeated, time-trends can be obtained, and it could be established whether conditions are improving or deteriorating.

A number of significant local pollution sources also exist in the Arctic or on its fringe. For instance large mining/exploration operations such as Sydvaranger, Kiruna, Kostomuksha, Norilsk, Faro, Pine Point, Marmorilik, and the coal, oil and gas industry in Svalbard, Barents Sea, Siberia, Chukotskiy, North Slope, Axel Heiberg and Ellesmere Islands. The impact these activities have on the atmosphere could be identified by the snow survey. Institutions like geological surveys or universities are best able to interpret the geochemical fingerprints these major operations impart to the environment. In view of potential future growth in the mining sector in the region, regional baseline investigations will be useful for environmental impact studies.

The objective of this report is to describe in detail the Icelandic samples, the sampling methods and analytical results.

Four ARCTIS snow samples, number 34, 35, 36, and 38, were taken from two Icelandic glaciers in 1997 (Table 1). One sample on the Langjökull glacier at 64°35'746 and 20°20'685, March 13, 1997, and three samples on the Vatnajökull glacier at 64°35'000 and 17°20'000, March 20, 1997. Two of the ARCTIS samples from the Vatnajökull glacier are duplicate samples of the 1996-1997 winter precipitation, but the third sample from the Vatnajökull glacier is a sample of the snow in contact with volcanic ash from the October 1996 Gjálp subglacial volcanic eruption in Vatnajökull (Gudmundsson et al., 1997). Three of the Science Institute samples are duplicates of three of the ARCTIS samples (34, 35, and 38; Table 1). For further study of the snow, nine Science Institute samples were taken in, above, and below the volcanic ash layer (Table 1 and Table 5).

The 1998 and 1999 March expedition were to the previous Langjökull sample spot, at 64°35'746 and 20°20'685.

GOAL OF THE ARCTIS PROJECT

- To establish the concentration levels of natural and anthropogenic elements and compounds in Arctic snow.
- To document the spatial variability of these elements/compounds in the Arctic region.
- To obtain winter deposition estimates of these elements/compounds in the Arctic.

DESCRIPTION OF THE ARCTIS PROJECT

Through a tightly knit network of enthusiastic partners, field workers and laboratories, collection of snow samples (cores) took place at the end of the winter 1997, at a low spatial density. This relayed mainly on expeditions going to the Arctic for other purposes, or through local environmental management authorities. Twenty two snow samples were taken in Russia, Alaska, Canada, Greenland, Iceland, Svalbard, Norway, Sweden and Finland. Of these, there are four pairs of duplicates, meaning we have covered 18 different locations. Ten additional snow samples were taken from one locality in Canada, which will be used for testing lab methods and QA/QC purposes, as well as testing the local chemical heterogeneity of the snow. This sample set adds one locality, bringing the total up to 19 localities sampled.

Snow samples were collected with the same type of equipment by all parties, and were sent frozen to a unique laboratory; the Geological Survey of Canada in Ottawa. Sample preparation included melting at room temperature and in-line filtering $(0.45 \, \mu m)$ in an ultra-clean room facility. Both the meltwater and the filter residue were analyzed for major, minor, and trace elements, isotopes, and organic compounds. Meltwater and filter residue were subjected to somewhat different analytical programs. For instance, the filter residues were studied by SEM/EDX and/or electron microprobe for particle characterization.

Additional to this, duplicate samples of the winter precipitation from all the Icelandic sites were taken and analyzed at the Science Institute, Reykjavík, Iceland and the SGAB laboratory, Luleå, Sweden. The winter precipitation at the Icelandic site on the Langjökull glacier has been monitored since 1997. These samples have been analyzed at the Science Institute, Reykjavík, Iceland, the SGAB Laboratory, Luleå, Sweden, the Stockholm University and the LECO Corporation, U.S.A.

SAMPLING METHODS

Selection of sampling sites

Snow from last winter only was collected. Flat, open virgin area was chosen, with no ski, foot or other tracks, away from trees and where snow cover appeared to be regular in thickness with no major ridges or holes and minimal reworking of the snow with wind. Holes were poked in

the snow layer down to the ground at 12 sites (see fig. 1) and the snow depth measured and recorded onto a special field sheet (Appendix 1). Walking was avoided where the snow cores were to be taken (see suggested path fig. 1). The five snow subsamples were collected at the corners and centers of a 20 by 20 m square, according to the procedure demonstrated on fig. 1.

Owing to the thickness of the snow layer on the Icelandic glaciers, PICO lightweight hand coring auger driven by a Honda generator was used during the first expedition in 1997 to drill exploratory holes, at the corners of a 40 m by 40 m square corresponding to sites 1, 3, 5, and 7 on fig. 1 (figs. 2 and 3). The clean core was taken from a trench that was dug in the middle of the square (fig. 4). The PICO core barrel, and extensions were made of fiber glass but fittings, adapters and cutting head were machined from aluminium (Koci, 1983). A 20 m extension cord was used from the Honda generator to the drill site in order to position the generator as far as possible and down wind from the clean core site in the middle of the square (fig. 4). In 1998 and 1999 no exploratory drill cores were taken on the Langjökull glacier, Iceland. Clean cores were taken from a trench.

Collection of snow cores

The equipment used for snow sampling was:

- One acid-washed polycarbonate (PC) snow corer, in sealed polyethylene (PE) sleeve and cardboard tube.
- One PC plate used for cleaning the core site.
- PE bags with closing strap
- · Non-talced, clear plastic gloves
- Pre-labelled cooling box
- Field sheet (see Appendix 1)
- · Tape measure, roll of film, roll of duct tape, marker, and rope
- Snow shovels, plastic and metallic
- Topographic map of the area
- GPS positioning equipment
- Temperature meter with a sharp probe
- Camera
- PICO lightweight hand coring auger
- Honda generator
- Gasoline and oil for the generator (kept in the car)

A trench, 3-4 m deep, was dug in the middle of a 40 m by 40 m square (fig. 4). The clean core equipment was then brought close to and downwind from the trench. The enveloping PE sleeve was removed from the PC corer. The PE sleeve was opened at the top of the corer, i.e.

not at the sharpened end of the tool. Care was taken not to put fingers or any object inside the tube of the PC corer at any time. The corer and the PC plate were always handled with plastic gloves. No smoking was allowed during sampling. The corer was then pushed five times into the snow pack to "clean" it, avoiding contact with the underlying vegetation, soil or rocks, these cores were discarded (fig. 5). A vertical wall was cleared by a plastic shovel, down to the bottom of the 1996-1997 winter layer (figs. 6 and 7). Care was taken that the thickness of the layer was representative for the area, i. e. well within the range of the for previous measurements done at the corners of the 40 by 40 m square. The depth of the snow layer was measured and recorded. The shovelled wall was treated as contaminated from the shovel (e. g. it was not touched with the plastic gloves). The PC plate was plunged five times into untouched snow to "clean" it. Then 10 cm of the wall was scraped away with the PC plate to have an uncontaminated vertical working surface (fig. 8). The PC plate was again plunged 5 times into untouched snow to "clean" it, and then inserted horizontally into the scraped surface at a depth suitable for the corer. The PC corer was then pushed/rotated vertically down into the snow layer, about five cm behind the clean surface (figs. 6 and 7) until it hit the plate. The corer was then pulled towards the trench, while holding the plate in contact with it. The snow core was emptied into a pre-labelled PE bag. This procedure was then repeated until all of the snow layer was sampled. One continuous core, filled one PE bag. All surplus air was then pushed out of the bag, the plastic strap rolled down at least five times and finally looped together. The strap was then used as handel. The ARCTIS sample 38 and the Science Institute sample 97-S025 of the snow from the Vatnajökull glacier in contact with the ash from the October 1996 subglacial eruption were carved out from the wall close to the bottom of the trench by the PC plate (figs. 9. and 10). The 9 Science Institute samples intended for further study of the snow were taken from the PICO cores in, above, and below the volcanic ash layer (fig. 11, Table 1). Two ARCTIS sampling bags fitted into the styrofoam box. The box was filled with excess snow to minimize melting of snow samples during transportation to the laboratory.

The duplicate samples that were collected in 1997 that were analyzed at the Science Institute, Reykjavík, Iceland and the SGAB laboratory, Luleå, Sweden, were sampled as described above, except three sample bags were needed to contain the whole sample and these bags were not acid washed.

The sample collected in March 1998 was collected in 3 plastic bags, similar to the Science Institute samples from 1997. The samples collected on the Langjökull glacier in 1999 were sampled as described above, but duplicate samples were taken. One into 3 sample bags that were not acid washed, and another into 3 sample bags that were acid washed. The bags were washed for one hour in 1 N HCl acid and then washed several times with deionized water and the final remaining water shaken out of the bags. The corer and PC plate were washed in

similar manner.

In all the expeditions, temperature profiles were measured in the trenches by thermistor meter using a sharp probe that was plunged 20 cm horizontally into the wall at a given depth in the trench. The result is given in Table 2.

An approximate density of the snow and ice from the winter precipitation of 1997-1998 and 1998-1999 on the Langjökull glacier was estimated from weight and geometry measurements (Table 3). The weight was measured by a spring scale and the volume was estimated by the length of each core and in the case of the ice layers, they were carved into a square and their sizes measured. These measurements were not accurate.

The density measurements were used to calculate the winter precipitation, equivalent to rainfall, at the sampling site (Table 4).

Sample treatment in the laboratory

The samples from the 1996-1997 winter precipitation were both melted at the Science Institute, Iceland and were sent frozen to the Geological Survey of Canada in Ottawa. These duplicate samples were analysed in Canada, Iceland, and the SGAB Laborateory Sweeden. The 1997-1998 winter precipitation on the Langjökull glacier was melted and analysed at the Science Institute and also analysed at SGAB. The 1998-1999 winter precipitation on the Langjökull glacier was melted at hte Science Institute and analysed at the Science Institute, SGAB Sweden and the LECO Corporation, U.S.A.

Sample preparation at the Geological Survey of Canada in Ottawa included melting at room temperature and in-line filtering (0.45 μ m) in an ultra-clean room facility. Both the meltwater and the filter residue were analyzed for major, minor, and trace elements, isotopes, and organic compounds. Meltwater and filter residue were subjected to somewhat different analytical programs. For instance, the filter residues were studied by SEM/EDX and/or electron microprobe for particle characterization.

Each of the Science Institute samples (three bags for each winter precipitation except 6 bags in 1999) were melted in the laboratory in one of the sampling bags, with an extra outer bag. The double bag was submerged into hot water (60-95 °C) in the laboratory sink. As the snow started to melt, the snow from the other two sampling bags were "pored" into the meltwater. This was done to minimize the contact of melt water with the surface of the bags. Once all the sample was melted, it was filtered through a 0.2 μm pore size cellulose acetate filter into polyethylene plastic bottles. The filter holder was 142 mm in diameter (Sartorius) and the contact area was made of teflon. The filter holder, tubing and filter was cleaned by 1 liter of sample previous to sampling. Sampling bottles were cleaned twice with the filtrated sample, and the 100 ml high density polyethylene sample bottle used for ICP-SMS, ICP-AES and Atom Fluorecens measurements were acid cleaned at the SGAB Laboratory in Luleå Sweden.

Conductivity and pH at a specific temperature were then measured, samples for nutrient analysis placed in a deep freezer at -18 °C and samples for ICP-SMS, ICP-AES and Atom Fluorecens measurements acidified by suprapure nitric acid, 1 ml to 100 ml, but samples for anion analyses were simply filtrated into a low density polyethylene bottle. All bottles, except the acid washed bottles, were new and were washed several times with the sample. Bottles used for samples to be measured by ICP-SMS were acid washed before they were washed by the sample. The concentration of solid particles were measured in the sample. The concentration of nutrients was measured by colourimetry on an auto-analyzer. The samples were taken out of the freezer the night before analysis. The results of these measurements are shown in Tables 5, 6 and 7, and results from various analytical methods are compared in Table 8.

The analytical work done at the SGAB Laboratory in Luleå Sweden was performed according to the so called V-2 analytical program. The V-2 program is a multi-element analysis of natural freshwater by a combination of inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma sector mass spectrometry (ICP-SMS), and atomic fluorescence spectrometry (AFS). Main elements (Ca, K, Mg...) are determined by ICP-AES together with minor and trace elements present in relatively high concentrations, while trace elements in low concentrations are determined by ICP-SMS. AFS is used specifically for mercury. Which ICP technique is used for which element in a specific sample is stated in the analytical report.

The methods used for ICP-AES and ICP-SMS are modified versions of the USEPA Methods 200.7 and 200.8, respectively. The AFS method is modified from the Swedish Standard Method 028175. Clean lab technology is applied and ultra-pure reagents are produced in-house by sub-boiling distillation of de-ionized water and analytical grade acid. Preparation of samples and standards is carried out in a Class 100 clean room. Quality control is performed in each analytical run by means of control blank samples, reference materials, and drift control samples. The results for the reference materials are evaluated by means of control charts. Results for a batch of samples are accepted only if the result for the accompanying reference material falls within statistically defined limits. The control charts are also evaluated regularly on a long-term basis for evaluation of accuracy, precision and long-term stability. SGAB Analytica is accredited for the methods in V-2 by the Swedish accreditation body SWEDAC.

Duplicates of the 1998-1999 winter precipitation samples were analyzed by the LECO corporation U.S.A. Analysis was performed using the LECO Renaissance Time-of-Flight (TOF) ICP-MS. The analytical method is described in Appendix 2. Result are shown in Table 9.

SHIPMENT OF THE ARCTIS SAMPLES

The samples were kept at -18°C in the laboratory until shipped by air from Iceland to Ottawa, Canada. The samples arrived in Ottawa, after minimal melting.

ACKNOWLEDGMENTS

Vilhjálmur Kjartansson, technical leader of all the expeditions, Óliver Hilmarsson, Andri Stefánsson, and Eiríkur Björnsson all participated in the various expeditions and contributed to their success by hard work, often under rather strenuous conditions. We are grateful for their help.

REFERENCES

Gudmundsson, M. T., Sigmundsson, F., and Björnsson, H., 1997. Ice-volcano interactions of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389, 954-957.

Koci, B. R., 1983. A lightweight hand coring auger. Proceedings of the Second International Symposium on Ice Drilling Technology, Calgary 1982. CRREL Special Report 83.

TABLES

- Table 1. Snow samples from the Langjökull and Vatnajökull glaciers, 1997-1999.
- Table 2. Temperature profile from the Langjökull and Vatnajökull glacier sampling sites, 1997 -1999.
- Table 3. Density profile from the Langjökull glacier sampling site, 1998 and 1999.
- Table 4. Winter precipitation, equivalent to rainfall, on the Langjökull glacier.
- Table 5. Chemical analysis of snow samples from the Langjökull and Vatnajökull glacier, 1997
- Table 6. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analyzed at the Science Institute, Reykjavík Iceland and SGAB, Luleå, Sweden.
- Table 7. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analyzed at the Canadian Geological Survey, Ottawa, Canada.
- Table 8. Comparison of the results from the various analytical methods
- Table 9. Comparison of the results from the various analytical methods employed for the 1998-1999 winter precipitation on the Langjökull glacier.

12

Table 1. Snow samples from the Langjökull and Vatnajökull glaciers 1997-1999

Part of the snow layer	all	0-280 ст	0-280 cm	no sample	275 280-305cm	0-260 сш	ash layer	ash layer	below ash	ash layer	ash layer	ash layer	ash layer	all	all	lle
Weather Snow depth. Snow depth. Snow depth. Sample trench Part of the comer 1, cm comer 3, cm corner 5, cm copner 7, cm	320	275	275		275									338	340	340
Snow depth. :	320	270	270		270								ash layer			
Snow depth.		280	280		280			ash layer	below ash							
now depth. Some oner 3, cm	330	296	296		296		ash layer									
Snow depth. Snow depth. Snow depth. Snow depth. comer 1, cm comer 3, cm comer 5, cm copner 7, cm	350	270	270		270					bottom	middle	top	27			
Weather S	-18 clear and calm	-10.6 snow showers	but calm	= ()	ŧ	*	T.		*	£ :		#)	ē	-8.8 Clear and calm	-10.7 Clear and calm	-10.7 Clear and calm
Time of Air temperature sampling °C	-18	-10.6	ĸ	OK	Þ.	ž.	F	*	t	F.				-8.8	-10.7	-10.7
Time of A sampling	1222 13.3.97 13:15-18:15													13:38-17:45	31.3.99 15:10-17:30	31.3.99 15:10-17:30
n Date	2 13.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	20.3.97	2 27.3.98	31.3.99	31.3.99
GPS elevation m.a.s.l	1223													1102		
GPS location GPS elevation m.a.s.l.	Langjökull 64°35′746-20°20′685	Vatnajökull 64°35'000-17°20'000	Vatnajökull 64°35'000-17°20'000	Vatnajökull 64°35'000-17°20'000	Vatnajökull 64°35'000-17°20'000	Core 1 64°35'000-17°20'000	Core I 64°35'000-17°20'000	Core 2 64°35'000-17°20'000	Core 2 64°35'000-17°20'000	64°35'000-17°20'000	Core 3 64°35'000-17°20'000	Core 3 64°35'000-17°20'000	Core 4 64°35'000-17°20'000	.35.746-20°20′685	°35'746-20°20'685	35746-20°20'685
Sample spot	Langjökull 64	Vatnajökull 64	Vatnajökull 64	Vatnajökull 64	Vatnajökull 64	Core 1 6	Core I 6	Core 2 6	Core 2 6	Core 3 6	Core 3 6	Core 3 6	Core 4 6	98-L1 Langjökull, 98-L1 64°35″746-20°20′685	99-L1 Langiökull, 99-L1 64°35′746-20°20′685	99-1.2* Langiökull, 99-L2 64°35 746-20°20'685
ARCTIS Science Inst. ample nr. sample nr.	97-8026	97-S027			97-S025	97-S028	97-5018	97-S019	97-8020	97-S021	97-S022	97-8023	97-S024	98-L1	17-66	#C 1.00
ARCTIS sample nr.	34*	35*	36*	37*	38*	2										

* Acid washed sample bags

Table 2. Temperature profile from the Langjökull and Vatnajökull glacier sampling sites, 1997 - 1999

2110	Depth	Temperature	Site	3	remperature oc			Temperatura
1997	cm	၁	1998	сш	သ	1999	EB	ارې
Tongighall 1992	_	-180	Langiökull, 1998	0		Langjökull, 1999	0	
Langlovan, 1777	2 40	-13.3	GPS location	10	-6.1	GPS location	10	-11.0
GPS location	20	-11.2	64°35′746-20°20′685	20	-5.1	64°35′746-20°20′685	20	-11.4
64°35'746-20°20'685	40	-8.3		30	-4.2		30	-10.2
	09	-7.4	GPS elevation	40	-2.7	GPS elevation	40	-8.4
GPS elevation	80	-7.3	1102 m	20	-1.7	222	20	9.7-
1222 m.a.s.l.	100	-7.2		99	-1.2		9	-7.0
	120	-6.7	Date 27.3.98	70	9.0-	Date 31.3.99	70	9.9-
Date 13.3.97	140	-6.4		80	-0.3		80	-6.5
	160	-5.8	Weather	90	-0.2	Weather	8	-6.4
Weather	180	-5.4	Clear and calm, -10.0°C	100	-0.1	Clear and calm, -11.0°C	100	9.9-
Clear and calm. and -18°C	200	-5.1	at the beginning	110	-0.1	at the beginning	110	0.9-
			of sampling	120	-0.1	of sampling	120	-5.9
Snow laver 320 cm	200	-5.5	1	130	-0.2		130	-5.6
	250	-4.6	Air temperature -6.0°C	140	-0.3	Air temperature -9.1°C	140	-5.8
	285	-4.0	at the end	150	-0.5	at the end	150	-6.1
			of sampling	160	-0.8	of sampling	160	-5.6
			,	170	-1.4		170	-5.0
Vatnaiökull	0	-10.6		180	-1.1		180	4.9
GPS location	ν.	-12.0		190	-1.2		190	-4.8
64°35'000-17°20'000	20	-13.7	Snow layer	200	-1.4	Snow layer	200	-5.1
	40	-13.3	338 cm	210	-1.4	340 cm	210	-5.3
Man elevation	09	-12.4		220	-1.5		220	-5.4
1675 m.a.s.l.	80	-11.9	Air pressure	230	-1.6		230	-4.6
	100	-11.2	1260 millibars	240	-1.7		240	4.8
Date 20.3.1997	120	-10.6		250	-2.2		250	-3.7
	140	-10.0		260	-1.9		260	-3.8
Weather	160	-9.4		270	-2.0		270	-4.2
Fogv. snow showers, but	180	0.6-		280	-1.0		280	-3.5
clear and calm, air	200	-8.6		290	-2.0		290	-3.2
temperature was -18 °C	250	-8.2		300	-2.1		300	-2.9
at the beginning	300	-7.4		310	-2.1		310	-3.0
of sampling				320	-2.0		320	-2.7
0				330	-2.1		330	-2.9
								0

Table 3. Density profile from the Langjökull glacier sampling site, 1998 and 1999

Sample depth cm	Sample description	Weight g	Length cm	r² cm	volume cm ³	Density g/cm ³
1998						
84	dense snow	1362	84	13.32	3516	0.39
132	wet snow	681	48	13.32	2009	0.34
189	snow	1589	80	13.32	3348	0.47
255	snow	1180	66	13.32	2762	0.43
260	ice lense	863			1350	0.64
330	snow	1226	61	13.32	2553	0.48
1999						
17	snow	370	24	13.32	1004	0.37
50	snow	409	25	13.32	1046	0.39
100	snow	321	19	13.32	795	0.40
150	snow	338	17	13.32	712	0.48
200	snow	625	25	13.32	1046	0.60
250	snow	446	20	13.32	837	0.53
272	ice lense	58		13.32	36	1.61
307	snow	284	12	13.32	502	0.57

Diameter of corer = 7.3 cm Volume of a cylinder (the corer) = $\pi r^2 l$ Density =mass (g)/volume (cm³)

Table 4. Winter precipitation, equivalent to rainfall, on the Langjökull glacier.

Douton	Sample	Sample	Sample	Measured	Measured	Snow	Ice-lense	Thickness of	Thickness of Thickness of ice-	Thickness of snow
ont cmt g/cm3 g/cm3 cmt mm/year	top	bottom	thickness	snow density	ice density	thickness	thickness		lenses as water	and ice as water
90 90 0.39 0.64 89.5 0.5 349.1 3.2 130 40 0.34 0.64 35.2 4.8 119.7 30.7 130 60 0.44 0.64 58.7 1.45 275.9 8.3 260 70 0.43 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 52 8 249.6 51.2 270 10 - 0.64 52 8 249.6 51.2 280 0.60 0.64 52 8 249.6 51.2 280 0.64 52 14.5 52.9 51.2 500 6.64 52 16.64 52.0 8 51.2 500 6.64 52 16.64 51.2 51.2 51.2 500 6.04 <t< td=""><td>СМ</td><td>СШ</td><td>cm</td><td>g/cm3</td><td>g/cm3</td><td>сш</td><td>сш</td><td>mm/year</td><td>mm/year</td><td>mm/year</td></t<>	СМ	СШ	cm	g/cm3	g/cm3	сш	сш	mm/year	mm/year	mm/year
130 40 0.34 0.64 35.2 4.8 119.7 30.7 190 60 0.47 0.64 58.7 1.3 275.9 8.3 250 70 0.43 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 55.5 14.5 238.7 92.8 330 60 0.48 0.64 55.5 14.5 238.7 92.8 330 60 0.48 0.64 52.2 8 249.6 51.2 50 0.48 0.54 50.64 55.0 8 249.6 51.2 50 0.40 4.5 sumed 5now 10.64 5now 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0	06	06	0.39	0.64	89.5	0.5	349.1	3.2	352.3
190 60 0.47 0.64 58.7 1.3 275.9 8.3 260 70 0.43 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 55.5 14.5 238.7 92.8 230 60 0.48 0.64 52 8 249.6 51.2 Sample Reasured Assumed Snow Inchenses 7 Inchenses of Inchenses	06	130	40	0.34	0.64	35.2	4.8	119.7		150.4
260 70 0.43 0.64 55.5 14.5 238.7 92.8 270 10 - 0.64 0 10 0 64.0 330 60 0.48 0.64 52 8 249.6 51.2 330 60 0.48 0.64 52 8 249.6 51.2 Sample 0.48 0.64 50 10 64.0 64.0 Sample Measured Assumed Snow 10c-lense Thickness of Inchess of Inches	130	190	09	0.47	0.64	58.7	1.3	275.9		284.2
270 10 - 0.64 0 10 0.0 64.0 330 60 0.48 0.64 52 8 249.6 51.2 330 60 0.48 0.64 52 8 249.6 51.2 Sample Measured Assumed Snow Incelense Thickness of T	190	260	70	0.43	0.64	55.5	14.5	238.7		331.5
330 60 0.48 0.64 52 8 249.6 51.2 Sample Measured Assumed Snow Ice-lense Thickness of Thickness of Inickness of Inicknes	260	270	10	4.00)	0.64	0	10	0.0	64.0	64.0
Sample Measured Assumed Snow Ice-lense Thickness of T	270	330	09	0.48	0.64	52	∞	249.6	51.2	300.8
Sample Measured Assumed Snow Ice-lense Thickness of Inchass of Inchasson of Inchass of Inchasson of Inchasson of Inchasson of Inchasson of Inchas									ij.	1483.1
Sample Measured Assumed Snow Ice-lense Thickness of T	March 31. 199	66								
bottom thickness snow density thickness thickness snow as water lenses as water and ice as an area of murkyear and ice as an area of murkyear murkyear <th>Sample</th> <th>1</th> <th>Sample</th> <th>Measured</th> <th>Assumed</th> <th>Snow</th> <th>Ice-lense</th> <th>Thickness of</th> <th>Thickness of ice-</th> <th>Thickness of snow</th>	Sample	1	Sample	Measured	Assumed	Snow	Ice-lense	Thickness of	Thickness of ice-	Thickness of snow
cm cm g/cm3 g/cm3 cm cm mmVyear mmVyear mmVyear mmVyear mm 0 50 0.37 50 0 185.0 0.0 0 0 100 50 0.40 20 0 0 0 0 120 20 0.44 30 0 0 0 0 0 170 20 0.48 0.64 12 90.2 7.7 0 200 30 0.54 0.64 27.7 2.3 149.6 14.7 0 240 40 0.60 0.64 39.5 0.5 237.0 3.2 0 300 60 0.53 0.64 57.3 2.7 303.7 17.3 0 340 40 0.57 0.64 35.2 4.8 200.6 30.7	top	bottom	thickness	snow density	ice density	thickness	thickness	snow as water	lenses as water	and ice as water
50 50 0.37 50 0 185.0 0.0 100 50 0.39 50 0 195.0 0.0 120 20 0.40 20 80.0 0.0 150 30 0.48 0.64 18.8 1.2 90.2 7.7 200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	ст	СТ	сш	g/cm3	g/cm3	ст	СМ	nm/year	nm/year	mm/year
100 50 0.39 50 0 195.0 0.0 120 20 0.40 20 0 80.0 0.0 150 30 0.44 30 0.64 18.8 1.2 90.2 7.7 200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	0	50	50	0.37		50	0	185.0		185.0
120 20 0.40 20 0 80.0 0.0 150 30 0.44 30 0 132.0 0.0 170 20 0.48 0.64 18.8 1.2 90.2 7.7 200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	20	100	50	0.39		20	0	195.0		195.0
150 30 0.44 30 0 132.0 0.0 170 20 0.48 0.64 18.8 1.2 90.2 7.7 200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 57.3 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	100	120	20	0.40		20	0	80.0		80.0
170 20 0.48 0.64 18.8 1.2 90.2 7.7 200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	120	150	30	0.44		30	0	132.0		132.0
200 30 0.54 0.64 27.7 2.3 149.6 14.7 240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	150	170	20	0.48	0.64	18.8	1.2	90.2		6.76
240 40 0.60 0.64 39.5 0.5 237.0 3.2 300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	170	200	30	0.54	0.64	27.7	2.3	149.6		164.3
300 60 0.53 0.64 57.3 2.7 303.7 17.3 340 40 0.57 0.64 35.2 4.8 200.6 30.7	200	240	40	09:0	0.64	39.5	0.5	237.0		240.2
340 40 0.57 0.64 35.2 4.8 200.6 30.7	240	300	09	0.53	0.64	57.3	2.7	303.7		321.0
	300	340	40	0.57	0.64	35.2	4.8	200.6		231.4
									ı	1646.8

Table 5. Chemical analysis of snow samples from the Langjökull and Vatnajökull glaciers, 1997

																77	
	ו בין בין	Hg/I	86.7		9.3			15.5	6.2								
	I DN	1/2/1	96.0 61.6 86.7	9	9.6 29.4			23.7	18.2								
5	FO4-F	mg/I	0.96		9.6			3.2	6.2	0.9	3.8						
IN CIN	NC3-IN	mg/1	15.5		26.0			7.8	8.1	39.4	<1,7						
TA OTA	NO ₂ -IN	Hg/I	<0,56		1.0			<0,56	0.7	<0,56	<0,56						
THE ST	N-YHN	C ug/l ug/l ug/l ug/l ug/l ug/l ug/l	15.3		7.5			5.4	6.7	33.8	17.4						
	I/pH	اد	21.1		20.3			21.8	23.0	43.1	23.2	27.3	12.4	38.8	39.5	12.7	
	PH T		24.8 5.40 21.1		20.1 5.12					5.01	5.15	5.63	5.23	5.06	5.55	5.14	
	I/cond.	اد	24.8		20.1			21.5	21.7								
	Conduct.	m2/cm	26		6.7			12.8	7.2								
	ARCTIS Science Inst. Sample spot Part of the Concentration of Conduct. I/cond. pH I/pH INH4-IN INO2-IN INO3-IN FO4-F IDIN IDF	snow layer volcanic ash, g/kg µS/cm	0.00		0.00			5.77	0.00	8.66	17.09	0.02	89.0	12.18	4.82	13.03	Lodony biog ton test and and
	Part of the	snow layer	all		0-280 cm	0-280 cm	no sample	280-305cm	0-260 cm	ash layer	ash layer	below ash	ash layer	ash layer	ash layer	ash layer	Lann head
	Sample spot		97-S026 Langjökull		Vatnajökull	Vatnajökull	Vatnajökull	Vatnajökull	Core I	Core I	Core II	Core II	Core III	Core III	Core III	Core IV	1 - 5
	Science Inst.	sample nr. sample nr.	97-S026		97-S027			97-S025	97-S028	97-S018	97-S019	97-8020	97-S021	97-8022	97-S023	97-S024	-
	ARCTIS	sample nr.	34		35	36	37	38	ı I								

All measurements done on samples from new bags, but not acid washed. Nutrients were measured by an auto-analyser at the Science Institute, University of Iceland.

Tabel 6. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analysed at the Science Institute, Reykjavík Iceland and SGAB, Luleå, Sweden.

		- 41		,		-	į	1	14	ť	Ma	8	S	٦	٦	TDC*
Sci. Inst.	Date AR	ARCTIS	Location	μd	pH ret,	Conduct.	SiC,	a Z	4	Ca	Mg	ŽOS	Ž,	, כ	J,	. 571
number	mu	number			$_{\rm C}$	шS/Sш	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
							ICP-AES	ICP-AES	ICP-SMS	ICP-AES	ICP-AES	ICP-AES	Dionex	Dionex	Ion sel.	
92,5026	13-Mar-97 I-34	4	Langiökull	5.4	21.1	26	<0.064	3.37	<0.400	0.14	0.39	1.06			6.23	11.6
97-8027	20-Mar-97 I-35		Vatnajökull	5.12	20.3	6.7	<0.064	0.73	<0.400	0.10	0.09	0.31			1.22	2.9
97-S027	20-Mar-97 I-36	9	Vatnajökull													
5005-26	20-Mar-97 I-38	00	Vatnajökull, ash	5.23	21.8	12.8	<0.064	1.34	<0.400	0.63	0.20	7.73			0.51	10.9
98-I.1	27-Mar-98		Langjökull	6.72	25.3	22.9	1.89	3.56	<0.400	0.15	0.26	1.22		4.38		11.9
99-1.1	31-Mar-99		Langiökull	6.24	20.7	8.5	<0.064	0.94	<0.400	<0.100	0.12	0.58	0.36	1.92		4.1
99-L2	31-Mar-99		Langjökull	5.73	19.7	9.1	<0.064	1.00	<0.400	<0.100	0.12	0.47	0.35	1.99		4.1
Sci Inst	S-isotopes	L	Ĭ.	NO'-N	NO2-N	N-,HN	PO ₄ -P	PO,-P	ΙΥ	Fe	Mn	ï		Hg	P _P	25
nimber	66	119/kg	LIE/KE	ug/kg	LIZ/Kg	ug/kg	ug/kg	µg/kg	µg/kg	hg/l	µg/kg	µg/kg		µg/kg	µg/kg	µg/kg
TO THE PARTY OF TH	8	Dionex	1	Colorim.	Colorim.	Colorim.	Colorim.	ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS		AFS		ICP-SMS
97-5026				15.5	<0.56	15.3	96.00	<0.15	1.45	080	0.17			0.0010	0.090	0.0052
97-8027			<20	26.0	1.00	7.5	09.6	0.16	0.88	0.40	0.04			0.0010	0.046	0.0030
97-S027															1	1
97-S025			125	7.8	<0.56	5.4	3.20	<0.15	48.50	13.90	16.40			0.0117	0.052	0.0119
98-1.1	12.98	20.0		28.9	1.34	32.7	6.22	<15.33	6.87	4.40	0.80	0.050		<0.0022	0.169	0.0553
09-I I		6.30		9.4	<0.56		17.70	19.40	0.64	09:0	0.09	0.056		<0.0022	0.016	0.0128
99-L2		6.38		10.0	<0.56		3.41	2.05	0.73	<0.4	90.0	0.032		<0.0022	0.018	0.0106
1	Λ	ئ	2	ž	đ	Zn		As	SP	Sn	Mo	ij	Be	Sr	Ba	D
SCI. IIISU	•	5			2	110/10		110/40	na/ka	no/ka	110/40	no/ko	nσ/kσ	119/kg	us/kg	ng/kg
number	LEP-SMS 10	HEYRE	HB/KB ICP-SMS	ICP-SMS	S.	ICP-SMS		ICP-QMS		ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS	ICP-SMS
97-S026	1	0.075		0.250	0.062	0.290		<0.0200			<0.0100			2.37	0.0336	
97-S027		0.081	0.005	0.216	0.063	0.306		<0.0200			<0.0100			0.519	0.0193	
97-S027					,			0000			0010			-	0 100	
97-S025		0.091			1.070	1.220		<0.0200			<0.0100	,	1	1./1	0.198	
98-L1	0.142	0.024	0.0151	0.420	0.268	1.240		<0.0100	3.6	21.7	0.098	119	5.5	1.890	0.132	0.4
99-1.1		0.011	0.0049	0.204	0.102	2.820		0.00			<0.0100			0.768	0.026	
00-1.7		<0.010	0.004	0.184	<0.100	1.360		<0,0100			<0.0100			0.78	0.02	
ICP-AES: Inc	luctively Coupled	Plasma -	ICP-AES: Inductively Coupled Plasma - Argon Emission Spectrometry	Spectrometry				Ion sel.:	Specific ion selective electrode	selective el	ectrode		TDS*: Not	TDS*: Not including bicarbonate	carbonate	
ICP-SMS: Inc	uctively Coupled	Рlаsma -	ICP-SMS: Inductively Coupled Plasma - High Resolution Mass Spectrometry	Aass Spectro	metry			Colorim.: C	Colorim.: Colorimetry, Autoanalyser	Autoanalys	er					
AFS: Atomfluorescence	orescence							Dionex: Hi	Dionex: High Pressure Ion Chromatograpy, Dionex	Ion Сhrom	atograpy, Di	onex				

17

Tabel 7. Concentration of major, trace and nutrient elements in Langjökull and Vatnajökull glacier snow 1997-1999. Analysed at the Canadian Geological Survey, Ottawa, Canada.

Due								0.0	;		,	;	0	ŧ	1000
13-Mac/97 134 Langidostil 11/87 135 211 20-0445 CP-0445 CP	Sci. Inst.		RCTIS	Location	Conductivity	H	pH ref,	SiO ₂	Na	⊻	Ca	Mg	SO.	コ	TDS*
	number	ă	итрег		т г с		J °C	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
13-May-37 1-34 Langighal 1387 535 211 0.044 2.845 0.183 0.137 0.956 6.25 2.044 0.181 0.204 0.131 0.204 0.111 0.204 0.20								ICP-QMS		ICP-OMS	ICP-QMS	ICP-OMS	ICP-QMS	Dionex	
20-Mar-97 1-55 Varnasjerkall < 5 5-45 5-10 5	97-S026	13-Mar-97 I-	.34	Langjökull	17.87	5.35	21.1	<0,043	2.845	0.183	0.122	0.377	996.0	6.22	10.7
Part	97-S027	20-Mar-97 I-	.35	Vatnajökull	< 5	5.45		<0,043	0.551	< 0.05	0.024	0.071	0.204	1.11	2.0
F Br	97-S027	20-Mar-97 I-	.36	Vatnajökull	<	5.42	20.3	<0,043	0.555	< 0.05	0.023	0.071	0.249	1.17	2.1
High Registration High	97-S025	20-Mar-97 I-	-38	Vatnajökull, ash	12.87	5.2	21.8	090.0	1.298	0.051	0.661	0.220	7.968	0.41	10.7
Part	Sci. Inst.	[L	Br		NO2-N	P04-P	Ь	Al	Fe	Mn	T		Hg	Pb	ಶ
Dionest Dion	number	пе/ке	це/ке		µg/kg	µg/kg	µg/kg	µg/kg	l/grl	µg/kg	µg/kg		µg/kg	µg/kg	µg/kg
Color Colo		Dionex	Dionex	П	Dionex	Dionex	ICP-QMS	ICP-QMS	- 1	ICP-QMS	ICP-OMS		Hydride	- 11	CP-OMS
Color Colo	97-S026	< 50	< 50		< 50	< 50	< 50	0.95	<1	090.0	< 0.05		0.0091	0.062	0.0025
Color Colo	97-S027	< 50	< 50		< 50	< 50	51	< 0.5	^	0.035	< 0.05		< 0.002	0.027	0.0063
1625 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$68.9 \$72 \$16,934 \$0.97 \$0.000 \$	97-S027	< 50	< 50		< 50	< 50	< 50	< 0.5	^	0.036	< 0.05		0.0022	0.027	0.0015
Sc	97-S025	162.5	< 50		< 50	< 50	< 50	69.89	7.2	16.934	0.097		< 0.002	0.010	0.0143
ICP-QMS ICP-	Sci. Inst.		Sc		Ü	ට	ï	S	Zn		As	Se	Sb	Te	Bi
CP-QMS ICP-QMS ICP-Q	number		µg/kg			µg/kg	µg/kg	µg/kg	µg/kg		µg/kg	µg/kg	ng/kg	µg/kg	µg/kg
Color Colo		I	CP-OMS	ICP	ICP	ICP-QMS	ICP-OMS	ICP-QMS	ICP-QMS		Hydride	Hydride	Hydride	Hydride	Hydride
CP_OMS COOR	97-S026		~		< 0.1	< 0.002	< 0.05	0.11	0.337		0.012	0.0261	0.0049	< 0.006	0.0033
Color Colo	97-S027		^		< 0.1	< 0.002	< 0.05	0.065	0.221		0.011	0.0117	< 0.003	< 0.006	0.0035
Li Rb Cs Be Sr Ba T No	97-S027		< 1 ×		< 0.1	< 0.002	< 0.05	0.052	0.238		0.013	0.0109	< 0.003	> 0.006	< 0.003
Li Rb Cs Be Sr Ba T Mo Ag In In Rb Cs Be Sr Ba T Mo Ag In Rb In	97-S025		< 1		< 0.1	0.1922	0.293	1.876	2.092		0.012	0.0121	0.0042	> 0.006	< 0.003
μg/kg μg/kg <t< td=""><td>Sci. Inst.</td><td></td><td>Ľ</td><td></td><td>S</td><td>Be</td><td>Sr</td><td>Ba</td><td></td><td></td><td>¥</td><td>Mo</td><td>Ag</td><td>In</td><td>n</td></t<>	Sci. Inst.		Ľ		S	Be	Sr	Ba			¥	Mo	Ag	In	n
CP-QMS ICP-QMS ICP-Q	number		µg/kg				µg/kg	µg/kg			µg/kg	µg/kg			ng/kg
0.0523 < 0.055		ı	ICP-QMS			ICP-OMS	ICP-QMS	ICP-QMS			ICP-OMS	ICP-OMS	- 1	- 1	ICP-OMS
0.0099 < 0.05 < 0.01 < 0.005 < 0.02 < 0.001 < 0.005 < 0.02 < 0.001 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	97-S026		0.0523			< 0.005	2.180	< 0.2			< 0.001	< 0.005	< 0.01	< 0.0005	< 0.0005
0.011 < 0.05 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	97-S027		0.0095			< 0.005	0.425	< 0.2			< 0.001	< 0.005	< 0.01	< 0.0005	< 0.0005
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb TcP-QMS ICP-QMS IC	97-S027		0.011			< 0.005	0.450	< 0.2			< 0.001	< 0.005	< 0.01	< 0.0005	< 0.0005
La Ce Pr Nd Sm Eu Gd Tb Ho Ho Er Tm Yb μg/kg	97-S025		0.5224			0.008	1.775	< 0.2			0.027	< 0.005	< 0.01	< 0.0005	< 0.0005
Higher	Sci. Inst.	La	ت			Sm	园		유	Dy	Ho	百	Tm	χp	吕
Comparison Com	number		µg/kg	2	a J	2	مي ا	<u>1</u>	µg/kg	μg/kg ICP-OMS	hg/kg ICP-OMS	hg/kg ICP-OMS	µg/kg ICP-OMS	µg/kg ICP-OMS	µg/kg ICP-OMS
\$\\ \circ{\circ}{\circ}\circ\circ}\circ{\circ}{\circ}\circ{\circ}{\circ}\circ{\circ}{\circ}\circ{\circ}{\circ}\circ\circ}\circ{\circ}{\circ}\circ\circ{\circ}{\circ}\circ{\circ}{\circ}\circ\circ}\circ\circ{\circ}{\circ}\circ\circ\circ}\circ\circ\circ\ci	9208-20	- 1	0.001	2	4		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
< 0.001	720S-79	< 0.001	< 0.001		< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
0.009 0.018 0.002 < 0.001 0.004 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 < 0.001 0.002 <td>97-8027</td> <td>< 0.001</td> <td>< 0.00</td> <td></td> <td></td> <td></td> <td></td> <td>< 0.001</td>	97-8027	< 0.001	< 0.00					< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Not including bicarbonate	97-S025	0.009	0.01					0.004	< 0.001	0.004	< 0.001	0.002	< 0.001	0.002	< 0.001
	TDS*: Not	including bicarbo	nate		c			Dionex: H	igh Pressure	Ion Chrom	atograpy, D	ionex	Adequation	Spectrosco	è

Table 8. Comparison of the results from the various analytical methods used for the 1996-1997 winter precipitation on the Vatnajökull and Langjökull glaciers

ordina.	Date	ARCIES	Location	ואמ	THE TACK	4				0	0		
ı		number			mg/kg error.	mg/kg	mg/kg error.		mg/kg error.		mg/kg error.		mg/kg error.
				ICP-QMS 1	ICP-AES %	ICP-QMS ICP-SMS %	CP-SMS %	- 1	ICP-AES %	- 1	ICP-AES %	- 11	ICP-AES %
97-S026	13-Mar-97	I-34	Langjökull	2.845	3.37 -17	0.183	<0.400	0.122	0.14 -10	0.377	0.39 -3	0.966	1.06 -9
97-S027	20-Mar-97	1-35	Vatnajökull	0.551	0.73 -28	< 0.05	<0.400	0.024	0.10 -124	0.071	0.09 -23	0.204	0.31 43
97-S027	20-Mar-97	1-36	Vatnajökull	0.555		< 0.05		0.023		0.071		0.249	
97-8025	20-Mar-97	I-38 Va	I-38 Vatnajökull, ash	1.298	1.34 -3	0.051	<0.400	0.661	0.63 5	0.220	0.20 9	7.968	7.73 3
								N.			i i		
Sample nr.	ט	CI Rel.	L	ш	F Rel.	Al	Al Rel	As	As Rel.	Ba	Ba Rel.	ಶ	Cd Rel.
•	mg/kg	mg/kg error.	or.	µg/kg	μg/kg error.	µg/kg	µg/kg error.	µg/kg	µg/kg error.		µg/kg error.		µg/kg error.
	Dionex	Ion sel. %	(1	Dionex	Ion sel. %	ICP-QMS I	ICP-SMS %	Hydride	Hydride ICP-SMS %	- 1	ICP-SMS %	- 1	ICP-SMS %
97-S026	6.220	6.230 0		< 50		0.95	1.5 -42	0.012	<0.0200	< 0.2	0.0336	0.0025	0.005 -70
97-S027	1.110	1.220 -9		< 50	<20	< 0.5	6.0	0.011	<0.0200	< 0.2	0.0193	0.0063	0.003 71
97-S027	1.165			< 50		< 0.5		0.013		< 0.2		0.0015	
97-S025	0.410	0.510 -22		162.5	125 26	69.89	48.5 34	0.012	<0.0200	< 0.2	0.198	0.0143	0.012 18
	ပိ	Co Rel.		ប៉	Cr Rel.	ನ	Cu Rel.	Fe	Fe Rel.	Hg	Hg Rel	Mn	Mn Rel.
	ug/kg	ug/kg error.	or.	µg/kg	µg/kg error.	pg/kg	µg/kg error.	μg/l	µg/l error.	µg/kg	μg/kg error.	µg/kg	μg/kg error.
	ICP-OMS	ICP-OMS ICP-SMS %		ICP-QMS IC	ICP-SMS %	ICP-QMS I	ICP-SMS %	ICP-QMS	ICP-SMS %	Hydride	AFS %	ICP-QMS	ICP-SMS %
	< 0.002	0.005	!	< 0.1	0.075	0.110	0.062 56	~	0.80	0.009	0.001 160	090.0	0.17 -95
	< 0.002	0.005		< 0.1	0.081	0.065	0.063 2	< 1	0.40	< 0.002	0.001	0.035	0.04 -10
	< 0.002			< 0.1		0.052		~		0.002		0.036	
	0.1922	0.154 22		< 0.1	0.091	1.876	1.070 55	7.2	13.90 -64	< 0.002	0.012	16.934	16.40 3
				i	1	C			7.0.7				
Sample nr.	ž	Ni Rel.	.,	Pb	Pb Rel.		Sr Kel.	UZ	Zn Kel.				
	μg/kg	µg/kg error.	ror.	μg/kg ICP-OMS	μg/kg μg/kg error. ICP-OMS ICP-SMS %	μg/kg ICP-OMS	μg/kg error. ICP-SMS %	μg/kg ICP-OMS	µg/kg error. ICP-SMS %				192
9202-20	< 0.05	0.250		0.062	0.090 -37		2.37 -8	0.337	0.290 15				
7202.70	< 0.05	0.216		0.027	0.046 -53	0.425	0.52 -20	0.221	0.306 -32				
97-8027	< 0.05			0.027		0.450		0.238					
3003 20	2000	0.424 20	_	0100	0.052 - 735	1 775	1714	2 002	1 220 53				

Table 9. Comparison of the results from the various analytical methods employed for the 1998-1999 winter precipitation on the Langjökull glacier (see Appendix 2). The samples were analyzed by Renaissance TOF-ICP-MS (LECO Corporation) and ICP-SMS and ICP-AES (SGAB, Luleå, Sweden).

Element	99-L1	99-L2	99-L1	99-L2
2.0	TOF-ICP-MS	TOF-ICP-MS	ICP-SMS	ICP-SMS
	LECO	LECO	SGAB	SGAB
		snow from		snow from
		acid washed bag		acid washed bag
	$[ppb = \mu g/L]$	$[ppb = \mu g/L]$	[ppb = μ g/L]	$[ppb = \mu g/L]$
Li	0.027	0.026		
Na	1000	1050	940**	1000**
Mg	122	125	120**	120**
Al	1.4	1.25	0.64	0.73
K	90	48	<400**	<400**
Ca	52	46.5	<100**	<100**
Cr	< 0.04	< 0.02	0.011	< 0.01
Mn	0.096	0.07	0,09	0,06
Fe1	0.9	0.45	0.6	< 0.4
Co	< 0.006	< 0.006	0.0049	0.004
Ni	0.29	0.25	0.204	0.184
Cu	0.09	0.08	0.102	< 0.100
Zn	3	1.3	2.82	1.36
As	0.18	< 0.05	0.09	< 0,01
Rb	0.025	0.016		
Sr	0.75	0.75	0.768	0.78
Mo	< 0.025	< 0.025	< 0.01	< 0.01
Cd	< 0.03	< 0.03	0.0128	0.0106
Cs	< 0.002	< 0.002		
Ba	0.025	0.02	0.026	0.02
Pb_Cool	< 0.005	< 0.005		
Pb_USN	0.012	0.016	0.016	0.018
* Ga, Y, Nb, Ag, Rh, In, Sb, Ce, Ta, Re, Tl, Th, U	< 0.006	< 0.006		
* Pr, Nd, Eu, Dy, Yb, Er, Ho, Tb, Tm, Lu	< 0.006	< 0.006		
* Ge, Zr, Pt, W, Sm, Dy, Yb, Gd	< 0.02	< 0.02		
* Be, Se	< 0.05	< 0.05		

There was a somewhat higher Pb value measured by ultrasonic nebulizer compared to the cool plasma data: this could come from contamination of glass surfaces of the USN and washout of Pb by the sample.

^{*:} Estimated from full spectrum scan: no visible peaks.

¹ See explanations in Appendix 2

^{**} Measured by ICP-AES

FIGURES

- Figure 1. Selection of sampling site
- Figure 2. PICO lightweight hand coring auger driven by a Honda generator was used to drill exploratory holes, at the corners of a 40 m by 40 m square corresponding to sites 1, 3, 5, and 7 on fig. 1
- Figure 3. The PICO lightweight hand coring auger fully extended.
- Figure 4. The clean core was taken from a trench that was dug in the middle of the square upwind from cars and equipment.
- Figure 5. The PC corer was pushed/rotated vertically down into the snow layer, about five cm behind the clean vertical surface of the trench.
- Figure 6. Snow sampling with the "clean" PC corer.
- Figure 7. Snow sampling with the "clean" PC corer. Note the location of the PC plate.
- Figure 8. Cleaning the face of the wall with the PC plate, wearing plastic gloves.
- Figure 9. A piece of snow and volcanic ash from the Vatnajökull site.
- Figure 10. A piece of snow and volcanic ash from the Vatnajökull site before melting in the laboratory.
- Figure 11. Core from the PICO lightweight hand coring auger, showing the ash layer from the October Gjálp subglacial eruption 1996.

Figure 1. Selection of sampling site.

Figure 2. PICO lightweight hand coring auger driven by a Honda generator was used to drill exploratory holes, at the corners of a 40 m by 40 m square corresponding to sites 1, 3, 5, and 7 on fig. 1.

Figure 3. The PICO lightweight hand coring auger fully extended.

Figure 4. The clean core was taken from a trench that was dug in the middle of the square upwind from cars and equipment.

Figure 5. The PC corer was pushed/rotated vertically down into the snow layer, about five cm behind the clean vertical surface of the trench.

Figure 6. Snow sampling with the "clean" PC corer.

Figure 7. Snow sampling with the "clean" PC corer. Note the location of the PC plate.

Figure 8. Cleaning the face of the wall with the PC plate, wearing plastic gloves.

APPENDIX 1; FIELD SHEETS AND DESCRIPTION OF SNOW CORES.

- 1. Field sheet for ARCTIS sample nr. 34 from the Langjökull glacier.
- 2. Field sheet for ARCTIS sample nr. 35 from the Vatnajökull glacier.
- 3. Field sheet for ARCTIS sample nr. 36 from the Vatnajökull glacier.
- 4. Field sheet for ARCTIS sample nr. 37 from the Vatnajökull glacier.
- 5. Detailed description of PICO core nr. 3(I) from the Vatnajökull glacier.
- 6. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1998.
- 7. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1999.

1. Field sheet for ARCTIS sample nr. 34 from the Langjökull glacier.
Sample ID: (see number on sample bag)
Name(s) of sampler(s): SIGNABIN R. GISLASON
Date (day/month/year):/3/mans_/1997 (please spell out the month, e.g. 'April')
Country: TCEUMN State/Province/Oblast/County: Commune/District: Closest town/village on map:
Name: LANGOKUL Number: 1714 II Scale: 1.50,000
Coordinates of sampling site System used (e.g. 'UTM'): Zone: Other info: We Northing: 64°35°746 Easting: 20°20′685 (G5M - Location)
Snow depth, record 12 measurements (cm) 1) 350 2)
Thickness of snow sampled (cm) (collect enough cores to fill one PE bag, normally 5 cores) 1) 320 2) 3 4) 5) 6) 7) 10; 11) 12)
General remarks about snow cover at this site Is the snow clean or rather dirty here? (Lean) Are there icy layers in the snowpack? at the totfout of the cove. Has the springtime snowmelt already started here?
Other comments/remarks:
When fieldwork is completed, please send - the topographic maps, with <u>sampling locations</u> and <u>sample numbers</u> indicated on them - the original field sheets to: Patrice de Caritat, Geological Survey of Norway, P.O. Box 3006, N-7002 Trondheim, NORWAY
Samples are to be sent frozen to: Gwendy Hall, Applied Geochemistry, Geological Survey of Canada. 601 Booth Street. Ottawa, Ontario KIA 0E8, CANADA

2. Field sheet for ARCTIS sample nr. 35 from the Vatnajökull glacier.

ARC ! IS Project - FIELD SHEE!
Sample ID: (see number on sample bag)
Name(s) of sampler(s): SIGURDUR 2. GISCIPSON
Date (day/month/year): 20/ MBNS/1997 (please spell out the month, e.g. 'April')
Country: TIELAND State/Province/Oblast/County: MATNADOKALL Closest town/village on map: GLACIEN.
Topographic map sheet used Name: DYNGJUJOLUNUMber: 2014 II Scale: 1 60 000,
Coordinates of sampling site System used (e.g. 'UTM'): Zone: Your Other info: Northing: b4°35'00 WEasting: 17°20'00 10 - 40m 7.
8
Thickness of snow sampled (cm) (collect enough cores to fill one PE bag, normally 5 cores) 1) 275 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)
General remarks about snow cover at this site Is the snow clean or rather dirty here? Item but volcautic asch lains below Are there icy layers in the snowpack? Sree drecriptions a Has the springtime snowmelt already started here? No Is there a risk that sample may be contaminated (plant material, soil)? Did you encounter problems during sampling? (if 'yes', describe below) Other comments/remarks:
5 cm 1915 OUE THE VOLUMNIC ASH LAYEN.
·•
When fieldwork is completed, please send - the topographic maps, with <u>sampling locations</u> and <u>sample numbers</u> indicated on them - the original field sheets
to: Patrice de Caritat, Geological Survey of Norway, P.O. Box 3006, N-7002 Trondheim, NORWAY
Samples are to be sent frozen to: Gwendy Hall, Applied Geochemistry, Geological Survey of

Canada, 601 Booth Street, Ottawa, Ontario KIA 0E8, CANADA

3. Field sheet for ARCTIS sample nr. 36 from the Vatnajökull glacier.
ARCTIS Project - FIELD SHEET
Sample ID: 36 (see number on sample bag) sample 35
Name(s) of sampler(s): SIGUNOUN GISLASOW
Date (day/month/year): 201 MHC5 /1997 (please spell out the month, e.g. 'April')
Country: State/Province/Oblast/County: Commune/District: Closest town/village on map:
Name: DYNGJUJÓKUU Number: 2014 II Scale: 1:50000
Coordinates of sampling site System used (e.g. 'UTM'): Zone: Other info: Wrust 17 20 00 Northing: 64 35 000 Easting: 17 20 00
Snow depth, record 12 measurements (cm) (1) 270 2) (3) 296 4) (5) 280 6) (7) 270 8) (9) (10) (11) (12)
Thickness of snow sampled (cm) (collect enough cores to fill one PE bag, normally 5 cores) 1) ≈ 2 ≈ 5 2) 3) 4) 5) 6) 7) 6) 10) 12) 12) 12) 12) 12) 12) 12) 12) 12) 12) 12) 12] 13)
General remarks about snow cover at this site Is the snow clean or rather dirty here?
THE CONER GOT STUCK INTO THE BISH CAYEN
PLUSTIC GLOVES.
· · · · · · · · · · · · · · · · · · ·
When fieldwork is completed, please send - the topographic maps, with <u>sampling locations</u> and <u>sample numbers</u> indicated on them - the original field sheets to: Patrice de Caritat, Geological Survey of Norway, P.O. Box 3006, N-7002 Trondheim,

Samples are to be sent frozen to: Gwendy Hall, Applied Geochemistry, Geological Survey of

Canada, 601 Booth Street, Ottawa, Ontario KIA 0E8, CANADA

4. Field sheet for ARCTIS sample nr. 37 from the Vatnajökull glacier.
co cut 134 THO
ARCTIS Project - FIELD SHEET BAG NO. 37 60 (UT 134 TITO) ARCTIS Project - FIELD SHEET BAG NO. 37 60 (UT 134 TITO) ARCTIS Project - FIELD SHEET BAG NO. 37 60 (UT 134 TITO)
Sample ID: No. 38 (see number on sample bag) BELOW SHUMLES 36
Name(s) of sampler(s): 5.11. Gist itsour
Date (day/month/year): 201 MANS /1997 (please spell out the month, e.g. 'April')
Country: JCELHND State/Province/Oblast/County: Commune/District: Closest town/village on map:
Name: <u>DYNAJUJOKUL</u> Number: <u>2014 II</u> Scale: <u>1:50</u> 000
Coordinates of sampling site System used (e.g. 'UTM'): 6435 000 Zone: 7720 000 Other info: Northing: Easting:
Snow depth, record 12 measurements (cm) () 270 2) (3) 296 4) (3) 280 6) (4) (5) 280 (6) (7) 270 (8) (9) (10) (11) (12) (12) (12) (13) (14) (15) <
Thickness of snow sampled (cm) (collect enough cores to fill one PE bag, normally 5 cores) 1)275 - 300 2) 3) 4) 5) 6) 7) 8) 9) (ii) 11) 12)
General remarks about snow cover at this site Is the snow clean or rather dirty here? DINTY WITH BOLCANIC USH Are there icy layers in the snowpack? YES Has the springtime snowmelt already started here? NO Is there a risk that sample may be contaminated (plant material, soil)? YES (VOL 1854) Did you encounter problems during sampling? NO (if 'yes', describe below)
Other comments/remarks: SAMPLED WITH THE PC-PLATE AND GLOUTS
ON.
When fieldwork is completed, please send - the topographic maps, with <u>sampling locations</u> and <u>sample numbers</u> indicated on them - the original field sheets to: Patrice de Caritat, Geological Survey of Norway, P.O. Box 3006, N-7002 Trondheim, NORWAY
Samples are to be sent frozen to: Gwendy Hall, Applied Geochemistry, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA 0E8, CANADA

5. Detailed description of PICO core nr. 3(I) from the Vatnajökull glacier.

	VATNAJOKULL GLACIEN S.R. GISCAS	
ONE 3(I)	ILELANO 20. MANS	1996
	84°35'000 (N) - 1720'000 (N)	
. Pošiektorita		
(117-13	77	
CONE (3	270 mmy	
	230 200	
	(///) 3 Cm ASM LAYER	
20	290 several ICE LAYERS	
	2 volcaric ash layers of 2. october 1996	deposite
40		
	310 ICE LAYER	
60	7-370-1	
30	320	
	118 CAYEN	-
	330	
	- July -	12.00
120	340 ICE LAYEN	
140		
140		
/		The State of the S
180/		a militar e
/200		
/~		
220	0.5 cm 11E LAYEN	
	0.2 cm ''	
240	0.5 00 "	à H
260	0.2 cm 4	
200	ne sterio per la	<u>a jank</u>
230	20m ICE - LAYEN	
	volcanic ash - 3cm scream this ice layers volcanic ash - deposited 2. Detober 1996	
3.00	US Vojeant 434	
320	- xc6	# 1 (4) h # 1
		y angus É s
340	ne c	
i i i i i i i i i i i i i i i i i i i	ILE LAYENS	
yr al Billian P		
	한 후 전 한국가 생각하다 나왔다면 하는 회사의 사회 보고 있다. 그리고 그리고 한 학생 1989년	

6. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1998.

- 7 -

			-2-
i			
	my		250 cm
1.9			-
	MI	SAMSTIAN ISLINSUN 50 M	n
-2.0			
-1.9		2-5 mm iscinsu.	W-01
_2.0			
-21 SNJON			360
	H	2 mm islinger	
-2./		1.5	
2.0	_		
-2/	\dashv	3-5 min - 56/N301	
1	A		
	2	ŹS	350 cm
	交		
	2		
	ĺ		
DO E			
		æ	
0.00	- !		
A CONTRACTOR AND A CONTRACTOR OF THE ACCOUNT.		EDUS DUNGA	in
		tous pursed,	

7. Detailed description of the snow and ice layers in the trench in the Langjökull glacier in 1999.

Trench	÷	langjökull Glacier, Icelan		
THE MEET.	-		31. march 1991	9
1-1				- <u>8</u> 11:3
1				TE
Densidy 9/cm³	Depth			
9/cm	CM			
	o-T			5
: =	20			
0.37				
	1 40		The second	
0.39	60			
0.01	1	The state of the s		
	-80			
	T 100			
0.40			10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	1 120			1021
				Die G
	- 140 T	0.5 cm ice layer, broken	10 Marie 10	
0.48	160			
	100	two 0.2 cm ice layers 0.1 cm ice layer		
	180	2.0 #		
	T 200	0.2 — 11 —		
0.60		0,2	THE PART WILLIAM STATE S	
	7 330	0.1	1 (1 mg/m) 27(1 mg/m) A 27(1 mg	3 3
	240	0.2		7-27
	1	0,2		
053	260			
= 	280	20 - 11 - SURAY CYUSTALS		
	200	2000x culeson		
187	300	3.0 - 4 -)		
0.57	320	TO THE RESERVE OF THE PARTY OF		
	320	TE III		
	340	0.3		5 550
		0.5 - v - > Dopth hoar (su	gar crystals), the summer layer.	
	360	1.0 - "	90	
-100-11-0			and the same	-
		2 11 2 22 23 200012		

LECO Corporation

APPENDIX 2; Report on the measurements done by the "Time Of Flight Indcuctively Coupled Plasma Mass Spectrometer" (TOF-ICP-MS). By János Fuscó.

Analysis of Langjökull Glacier Water Samples for

ICETEC

February 9, 2000

János Fucskó Product Specialist, TOF-ICP-MS Team, LECO Corporation

Table of Contents

Section 1: Overview

Section 2: Measurement - Analytical method

Section 3: Results, figures and discussion

Section 4: Conclusion

Appendix: Details, Figures, Calibrations, Illustration of

Instrument Performance

Section 1

Overview

Two samples were sent in for analysis by TOF-ICP-MS.

The samples were labeled 99-L1 and 99-L2.

Analysis was performed using a conventional solution sample introduction system with a Meinhard concentric nebulizer and Wu-Hieftje cyclonic spray chamber. A few elements were checked with an ultrasonic nebulizer.

Most of the elements requested can be determined with these sample introduction systems. However, P, S and Si are difficult to determine due to interferences. An appropriate sample introduction system such as an electrothermal vaporization or a membrane desolvation system would likely improve determination of these elements.

Certain elements not contained in the list of requested elements were semiquantitatively determined based on the full mass spectra of the samples.

Measurement - Analytical Method

The goal was to demonstrate the capability of TOF-ICP-MS for the measurement of water samples.

Analysis was performed using the LECO Renaissance Time-of-Flight (TOF) ICP-MS and simple sample introduction options for trace metal measurement, as:

- The measurements were performed at 100, 10, 2 and 1X dilutions of the samples with conventional Meinhard concentric nebulizer and Wu-Hieftje glass cyclonic spray chamber, using 'cool' and 'hot plasma' modes. 'Cool plasma' means reduced power plasma with increased gas flow rates to reduce plasma temperature, while 'hot plasma' means the regular plasma parameters. See table 1 for instrument conditions.
- 2) Measurements were performed with cool plasma in two operation mode:
 - without Na deflection, measuring all major components of the samples
 - by deflecting Na, as the major metal component to decrease the overall ion current.
- 3) Measurements were also done by regular or 'hot' plasma mode. Hot plasma measurements were performed using the conventional sample introduction systems and an ultrasonic nebulizer (USN).
- 4) Interference check measurements were performed using single element standard solutions for the major components of the samples (Na and Mg).

Measurement - Details

The samples were measured using normal TOF-ICP-MS methods and procedures.

1) Samples were acidified to 1% nitric acid concentration. Standards were also prepared with 1% nitric acid solution in a wide concentration range, so that instrument linearity can be demonstrated. Multielement standards were used for calibration, while single element high concentration standards were used for interference checks.

- 2) All samples were measured together after instrument optimization. The CETAC USN 5000 ultrasonic nebulizer was used for sample introduction to verify low concentration data of some elements. For similar relatively clean samples, application of the ultrasonic nebulizer (USN) may improve analyte transport efficiency and sensitivity by a factor of 10-20 resulting in better detection limits. Therefore USN can be recommended for more demanding applications, when lower detection limits are required. On the other hand, the washout time of USN is considerably longer, and more cleaning of the large glass surface is required to avoid memory and cross-contamination problems. Therefore, sample throughput is likely lower using the USN.
- Seven replicate measurements, each with a 10 sec integration time were performed for each sample for quantitative analysis, resulting in an overall acquisition time of ~70 second. During this time period, ion signals from 100-120 isotopes can be acquired. Typical rinse and sample take up time between samples was ~60 seconds. Therefore, one single measurement is ~ 2-2.5 minutes. This time can be reduced to half, approximately, if detection limit is less critical: 5 second integration time, 7 replicates and 30-40 sec time between subsequent samples can give reasonably good detection limits, only ~ 2X higher than measured with the above conditions.
- 4) Full mass spectra were also collected with 10 sec integration time. These full mass spectra were used to analyze what other elements may be in the samples and what interferences may be expected. For full spectrum acquisition, only one replicate was measured with the same 10 sec integration time as for quantitative analysis. Data were collected and recorded in the 1 300 amu mass range providing a full picture of the sample composition.

Multielement simultaneous advantage of ICP-TOF-MS

It is important to keep in mind the simultaneous nature of the ICP-TOF-MS versus a sequential ICP-MS. The ICP-TOF-MS can easily demonstrate superior multielement sensitivity over a conventional quadrupole ICP-MS. This is because ions of all m/z are measured from the same time point of the plasma. The sensitivity of a quadrupole ICP-MS represents the ideal case where only one m/z is measured, while the sensitivity for the TOF represents a true multielement case. In this specific analysis, a 10 second integration time was used for all measurements. Using an extended integration time is helpful in several respects, namely improvement in instrument detection limit and improvement in measurement precision. Due to the simultaneous nature of the ICP-TOF-MS these improvements come with only a minimal effect on sample throughput.

As an example, during the 70 sec total measurement time in quantitative mode, 70 times more ions are measured than the reported counts per second (CPS) intensity. For instance, if the intensity of an ion signal is 1000 CPS, eventually 70*1000=70000 counts (ions) are measured. If 70 isotopes are required to analyze, the measurement time has to be divided up to 70 smaller intervals with a sequential system. Therefore an average of 70 times less ions are collected for each isotopes, if the count rate is the same as for ICP-TOF-MS. Compensating this loss would require a 70 times higher sensitivity.

The main instrument parameters are summarized in Table 1.

Table 1: Main instrument parameters

Parameter	Cool Plasma	Hot plasma
RFpower	~800 W	~1300 W
		(1289 W)
Nebulizer gas flow	1.38 L <i>l</i> min	1.21 L <i>l</i> min
Plasma gas flow	16.15 L/min	13.8 L <i>l</i> min
Auxiliary gas flow	1.03 L <i>l</i> min	0.61 L <i>l</i> min
X position	0.7 mm	0 mm
Y position	-0.1 m	0 mm
Z position	5 mm	4.3 mm
Peristaltic pump	15 rpm	15 rpm
Detector voltage	-2400 V	-2400 V

Table 2. Trace metals in two glacier water samples (99-L1 and 99-L2) by Renaissance TOF-ICP-MS

	99-L1	99-L2	-	surements SMS
Element	[ppb =μg/L]	[ppb = μg/L]	L1	L2
Li	0.027	0.026		
Na	1000	1050	940*	1000*
Mg	122	125	120*	120*
Al	1.4	1.25	0.64	0.730
K	90	48	<400*	<400
Ca	52	46.5	<100*	<100
Cr	<0.04	<0.02	0.011	<0.01
Mn	0.096	0.07	0,09	0,06
Fe ¹	0.9	0.45	0.6	<0.4
Co	<0.006	<0.006	0.0049	0.004
Ni	0.29	0.25	0.204	0.184
Cu	0.09	0.08	0.102	<0.100
Zn	3	1.3	2.82	1.36
As	0.18	<0.05	0.09	<0,01
Rb	0.025	0.016		
Sr	0.75	0.75	0.768	0.78
Mo	<0.025	<0.025	<0.01	<0.01
Cd	<0.03	<0.03	0.0128	0.0106
Cs	<0.002	<0.002	7 9	
Ва	0.025	0.02	0.026	0.02
Pb_Cool	<0.005	<0.005		
Pb_USN	0.012	0.016	0.016	0.018
* Ga, Y, Nb, Ag, Rh, In, Sb, Ce, Ta, Re, Tl, Th, U	<0.006	<0.006		
* Pr, Nd, Eu, Dy, Yb, Er, Ho, Tb, Tm, Lu	<0.006	<0.006		
* Ge, Zr, Pt, W, Sm, Dy, Yb, Gd	<0.02	<0.02		

			3 4 V
* Po So	<0.05	<0.05	1
* Be, Se	70.03	70.03	

^{*} measured with ICP-AES

Table 3: Detection limits measured during analysis of two glacier water samples

	Hot plasma	Cool plasma
Element	DL [ppb]	DL [ppb]
Li	0.012	0.00006
Be	0.050	NA
Na	0.080	0.0025
Mg	0.006	0.0003
Al	0.003	0.0020
K	NA	0.0070
Ca	1.500	0.0800
Cr	0.013	0.0007
Mn	0.002	0.0002
Fe	NA	0.0150
Со	0.003	0.0012
Ni	0.009	0.001
Cu	0.003	0.0005
Zn	0.008	0.0150
Rb	0.0015	0.0002
Sr	0.0015	0.0002
Мо	0.003	NA
Cd	0.007	NA
Cs	0.0005	0.0002
Ва	0.0008	0.0006
Pb	0.003	0.0010

NA: not measured/available with the given plasma condition

Na, Al, Ca, Fe and Zn detection limits could be 'blank limited' by the possible contamination in the blanks

There was a somewhat higher Pb value measured by ultrasonic nebulizer compared to the cool plasma data: this could come from contamination of glass surfaces of the USN and washout of Pb by the sample.

^{*:} Estimated from full spectrum scan: no visible peaks.

See explanations in text

Table 4: Major isotope sensitivity and instrument background during cool plasma measurement of glacier water samples

Elements	Major isotope Sensitivity CPS/ppb
Li	13954
Na	11047
Mg	8262
Al	8363
K	6946
Ca	7344
Cr	3308
Mn	7155
Fe	4733
Co	4363
Ni	2729
Cu	3064
Zn	218
Rb	6740
Sr	5994
Cs	5898
Ва	1980
Pb	733
Background	5-9 CPS/isotope
or	0.3-0.5CPS/point

Section 3

Results

The analytical results of samples are shown on Table 2.

The measured detection limits during these analyses are listed in Table 3 for both hot and cool plasma conditions. Instrument sensitivity and background is given in Table 4, for 'cool plasma' conditions.

Some spectra of samples are provided on figures, separately.

Detection limits at the ppt = ng/L and sub-ppt range were achieved.

Discussion

These samples were of relatively simple matrix, an excellent choice for testing instrument performance. Please, note, that many of the outstanding capabilities of axial ICP-TOF-MS could not be shown by these tests: measurement of microvolume samples, transient signal measurements, direct solid micro sampling. Information on these applications can be provided upon request

Consideration of Interference and Corrections

The simultaneous nature of the ICP-TOF-MS can be very useful for measurement of multiple isotopes of the same element (isotopic confirmation) and for interference recognition and correction. As an example for this, all the isotopes of Sr and Pb (⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, ⁸⁸Sr, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) were measured. Obtaining the same results for each isotope can be very beneficial for confidence in the analytical data. Likewise, interference correction for overlapping isotopes (Rb/Sr and Sn/Cd) can also be performed more precisely by measuring all isotope at the same time (⁸⁵Rb used for correcting interference on ⁸⁷Sr, ¹¹⁸Sn used for correcting interference on ¹¹⁴Cd, in this case.) Using the ICP-TOF-MS, these features can be obtained without any sacrifice in analysis time. On-line interference correction equations with instrument background correction are demonstrated separately.

Matrix induced interferences must be considered during ICP-MS analysis, because of molecular ion formation and signal suppression or enhancement. This can be done with 'interference check standards' (Na, Mg), standard addition (spike) and addition of internal standards. Appropriate interference correction should be performed.

Therefore,

- 1. The effect of 'high' Na and Mg matrix was studied during cool plasma measurement 3839 ppb Na gave an equivalent signal of 0.151 ppb at K, as NaO[†] (and potentially, as K contamination in the standard, vial and reagents). This would translate to a < 0.05 ppb K contribution in the samples, therefore interference correction is not needed for K levels >40 ppb. The contribution of Na on the m/z=40 signal (as NaOH⁺) seemed to be negligible too: <0.2 ppb. However, the ⁶³Cu signal is increased due to ArNa⁺ formation. Therefore the non-interfered ⁶⁵Cu signal was used for quantitation, although interference correction is another possibility. The measured Fe concentration is nearly proportional to the K concentration. There is some possibility that the measured Fe value (0.9 and 0.45 ppb for L1 and L2 respectively) may come from interference of K as KOH⁺, although the chemically similar Na showed very small NaOH interference. This interference has not been checked, but can be done if specifically requested. Also, in case of As in sample L1, there is a possibility of interference (Ar35CI+). However, the simultaneous monitoring of the 77 isotope (Ar³⁷Cl⁺) in the blank and samples disapproved the chloride interference.
- 2. Standard addition was used to study matrix suppression-enhancement interferences. An ~20 element spike (~2 ppb level) of the 10X diluted sample was measured, and even the cool plasma response was within 85-105%, for most elements within 95-105% range. Correction of data of a few elements was performed (cool plasma) if precision was effected by matrix suppression.
- 3. Internal standard (Rb, Cs) was added to 2X diluted samples at 2 ppb concentration level and <5% signal suppression was observed in the samples compared to the blank with internal standard.

Similar interference-check practices, even matrix matching blanks and standardization are common in routine ICP-MS work for most sample types. Unfortunately, high-resolution ICP-MS does not simplify this work considerably and adds more variables with the resolution selection.

Conclusions

Two glacier water samples from the glacier Langjvkull were successfully analyzed, and the applicability of the Renaissance ICP-TOF-MS was proven for similar applications. Detection limits were measured at the single digit ppt and sub-ppt range for many elements. Similar detection limits, however, can be achieved by other ICP-MS systems as well. The true advantage of ICP-TOF-MS is for the simultaneous plasma sampling and simultaneous multielement analysis.

Excellent cool plasma capabilities help the measurement of several interfered isotopes in many matrices. Also, enhancement of sensitivity by improving sample introduction efficiency could further reduce detection limits.

In addition to this application, the versatility of ICP-TOF-MS can be a great advantage for a laboratory planning to analyze different sample types and use several different sample introduction systems. The simultaneous plasma sampling and multielement analysis fits particularly well to transient sample measurements and microvolume sample analysis. Transient and microvolume sample introduction such as ETV, laser ablation and low volume solution introduction systems show great promise when combined with ICP-TOF-MS.

Acknowledgment

Review of this report by Lloyd Allen, Product Specialist was very helpful and gratefully appreciated.