NORDIC VOLCANOLOGICAL INSTITUTE 8902 UNIVERSITY OF ICELAND

SHEET INTRUSIONS ASSOCIATED WITH THE REYKJADALUR VOLCANO, WESTERN ICELAND; STRUCTURE AND COMPOSITION

By

Havard Gautneb

Reykjavik 1989

ABSTRACT

The sheet swarm of the Tertiary Reykjadalur volcano comprises a large number of inclined sheets associated with the central part of the volcanic edifice. These inclined sheets show large variation in dip and strike. They occur as two а lithological groups of aphyric and porphyritic tholeiites. Regional dykes, formed in the now extinct rift zones outside the volcanic edifice, are thicker and dip more steeply than the inclined sheets. Seventy samples of inclined sheets and regional dykes were analyzed for main and trace elements and show that the sheet intrusions are mainly tholeiites but a few ol-tholeiites and icelandites occur. The most evolved inclined sheets are found in the central part of the caldera associated with the volcano, whereas the most primitive sheets are found along the caldera margin. Although inclined sheets and dykes are somewhat different in lithology, it is not possible to chemically distinguish between inclined sheets and regional dykes with standard XRF methods of main and trace elements.

CONTENTS

ABSTRACT	1
CONTENTS	2
	3
	J
GEOLOGICAL SETTING	3
METHODS	8
Terminology .	8
Field measurements	8
Analytical methods	9
DESCRIPTION	10
Field observation .	10
Petrography .	11
RESULTS	13
Structural data .	13
Regional dykes .	13
Inclined sheets	15
Discussion of dip, strike and thickness variations	17
Chemical data	17
Regional dykes	17
Inclined sheets	25
Chemical comparison of regional dykes	
and inclined sheets.	3 2
SUMMARY AND CONCLUSIONS	33
ACKNOWLEDGEMENTS	34

INTRODUCTION

The aim of this report is to present the most important structural and chemical data on the sheet intrusions in the Reykjadalur volcano and surrounding areas, in addition to those reported in Gautneb¹.

investigation was made during six weeks field work in The the summer of 1988. Around 500 dykes and sheets were studied, 45 thin sections were made and 60 whole rock chemical analyses was performed. The chemical analyses was made in order to obtain data to test whether there was chemical difference between sheet intrusions inside and outside the Reykjadalur volcano.

GEOLOGICAL SETTING

The Reykjadalur area is situated about 90 km north of in a Reykjavik Tertiary lava pile (Fig. 1). Most of the investigated area is easily accessible from the main roads along Nordurdalur² and Midhdalir. The area offers good outcrops along numerous river and stream sections. It is, however, difficult to most rivers since the currents are strong and the water cross depth normally exceeds 0.5 m. The valley sides are mostly covered with scree or peat and offer poor exposures.

¹Gautneb H. 1989 The structure of the Reykjadalur sheet swarm, MS

submitted to Tectonophysics. ²The reader is referred to the topographic maps Laxardalur and Nordurdalur 1:100000 (Iceland Geodetic Survey) for location of place names.

The Reykjadalur area was investigated by Johannesson³ who described the general structure and petrochemistry of alldescribed the general structural and petrochemistry of all extrusive and intrusive rocks, as well as observing faults and geothermal springs. According to Johannesson³ the main geological units are the following:

- A 12-13 Ma old basement of flood basalts, tilted and faulted.
- 2) The 7 Ma old Hredavath sedimentary horizon. This horizon is situated unconformably on the underlying basement.
- 3) Hallarmuli central volcano which was active form 6.7-7.0 Ma ago and contains ignimbrites, intermediate rocks and thin tholeiitic lava flows. This is a rather small central volcano which did not develop the structural and chemical features characteristic of larger mature central volcanoes.
- 4) Reykjadalur central volcano, active from about 6.0 to 4.0 Ma. It is situated unconformably on the Hallarmuli volcano. This volcano has the following series of extrusives:
 - a) Thick layered serie consisting of tholeiitic to icelanditic lava flows.

³Johannesson H. 1975 Structure and petrochemistry of the Reykjadalur central volcano and surrounding areas, midwest Iceland. Ph.D thesis, University, of Durham 273pp.

- b) The main phase of differentiated extrusives, mainly intermediate to acid lavas.
- c) Thin layered series of mainly tholeiitic composition.
- d) The caldera in-fill.

A collapse caldera, 10 km in diameter and with vertical displacement in excess of 800 m, occupies the central part of the volcano. Before the Reykjadalur volcano became extinct the whole area was covered with a icecap 4.3-4.4 Ma ago and the Holthavorduheidi sedimentary horizon was deposited.

In the volcano the following intrusions occur:

- a) Basaltic to rhyolitic dykes
- b) Basaltic to rhyolitic inclined sheets
- c) Gabbroic to rhyolitic plugs and stocks

Based on the methods of Walker⁴ the maximum level of erosion is about 1000 m. The highest mountain peaks **a**re about hundred meters below the initial lava pile.

Fault activity

The faults are closely associated with the sheet and dyke intrusions. According to Johannesson⁵ the faults can be divided

⁴Walker G.P.L. 1960. Zeolite zones and dyke distribution in relation of the structure of Eastern Iceland. J. Geol. 68, 518-528. ⁵Johannesson H. 1975 Structure and petrochemistry of the Reykjadalur central volcano and surrounding areas, midwest Iceland. Ph.D. thesis Univ. Durham 273pp.

⁵

into the following groups:

1. NE-SW faults

These occur only in the area south of the Reykjadalur volcano. Few faults occur in the southeastern part of the area, but they are abundant in the Grothals area and in the western part of Nordurdalur. The trend changes from NE-SW to ENE-WSW northwards along the Grothals ridge. Most faults dissect the lavas at right angles, indicating that the faulting took place prior to the tilting of the lavas.

2. N-S faults

These faults are the only ones found north of the Reykjadalur volcano, but on the southern side of the volcano the faults can be followed as far as to Thverarhlid. These faults cut the Reykjadalur central volcano.

3. NW-SE faults

Faults of this trend occur in small number in the southernmost part of the area. Fig.1

Fig. 1 Simplified map of the investigated area. A to F are localities of regional dykes. 1 to 7 are localities of inclined sheets. Inset: 1 Neovolcanic zone, 2 Plio- Pleistocene rocks, 3 Tertiary rocks.

METHODS

Terminology

Here the term <u>inclined sheet</u> is used for sheets associated with the central volcano. The term <u>regional dyke</u> or <u>dyke</u> is used for sheets occurring outside the central volcano i.e., more than ten kilometres from the caldera margin. The term <u>sheet</u> is used when no distinction is made between inclined sheets and regional dykes.

Field measurements

The sheet intrusions were studied systematically and the following parameters were recorded for each sheet (where possible):

- 1. Strike and dip
- 2. Thickness
- 3. Lithology
- 4. Type of host rock
- 5. Vesicles and amygdales in the sheet
- 6. Vesicles and amygdales in the host rock
- 7. Alteration of the sheet and the host rock
- 8. Number and form of columnar rows in the host rock
- 9. Form of sheet (e.g. matching features on the sheet walls)
- 10. Lithology and abundance of xenoliths
- 11. Crosscutting relationships

12. Other features (e.g. flow-lines, chilled margin and other internal sheet structures)

It was not possible to measure all these parameters in each locality, but the first four were always recorded.

Analytical methods

representative selection of sheets Α from different localities and with different lithologies was collected for chemical analysis. The samples were rushed to -150 mesh in a tungsten-carbide ballmill. 9.0 g rock powder was mixed with 9.0 ml moviol glue. This mixture was pressed to tablets with 10 tons Then the tablets were dried at 60° C for 2 pressure in 30 s. tablets weres analysed with the analytical hours. These the facilities at department of geology of the University of automatic Phillips 1450 XRF with full Bergen, Norway, on an mass-absorption correction for all elements. Seventen international standards were used for calibration. International standards were also analysed as unknown for instrument stability check. This analytical procedure took much less time than would have been needed for similar work using the present analytical facilities at N.V.I. The chemical analyses are listen in Table 3.

DESCRIPTION

Field observation

The sheets were studied in the river and stream traverses shown in Fig. 1. A distinction was made between inclined sheets associated with the volcano (station 1 to 7 in Fig. 1), and regional dykes (stations A to F in Fig. 1) far outside the volcano.

Lithological variation

Broadly the sheets can be grouped into porphyritic and aphyric basalts. Most sheets are fine grained to very finegrained. The porphyritic sheets contain mainly lath-shaped plagioclase phenocrysts, but in addition phenocrysts of clinopyroxene occur in some sheets. The plagioclase phenocrysts are up to 3 cm long and comprise almost 50% of the volume of the rock. They are mainly confined to the caldera and decrease in abundance with distance from the caldera. The porphyritic sheets comprise slightly above 30% of the total number of sheets but are mainly confined to the caldera.

Within the caldera the sheet swarm contains an enormous number of crosscutting sheets (Fig. 2), but it has not been possible to distinguish between subsets of dominant trends and relative age. The dominating directions are shown in Fig. 1. The regional dykes, which occur outside the caldera are normally aphyric, relatively thick, steeply dipping, and intrude perpendicular to the dip of the lavas. The regional dykes show well developed columnar rows, often in several sets, developed perpendicular to the dyke walls (Fig. 3).

Fig. 2 Crosscutting inclined sheets at locality 2 in Fig. 1. The sheets occur in complex crosscutting relationships with no age dependent preferred strike.

Petrography

Many thinsections were made for general classification and alteration studies of the sheets. The typical ophitic (dolerite) texture is most common with intergrowths of plagioclase and clinopyroxene, and clinopyroxene as the dominant chadacryst. The plagioclase is usually lath- or needle-shaped and sometimes arranged in glomerophyritic aggregates together with clinopyroxene. The plagioclase commonly shows undulatory zoning. The plagioclase phenocrysts in the porphyritic sheets are commonly poikilitic with inclusions of earlier formed plagioclase, clinopyroxene and opaques. The opaque minerals often occurs in particular zones in the plagioclase oikocrysts.

The degree of alteration is high for many of the sheets, is seen by desintegration of the plagioclase to epidote, calsite and zeolites and the alteration of clinopyroxene to chlorite and opaques. Very high degree of alteration is characterized by complete obliteration of the primary textures and appearance of considerable amount of secondary pyrite.

Most regional dykes are less altered than the inclined sheets at the caldera centre, but many dykes contain small cavities filled with secondary amygdale minerals.

Fig. 3 Typical regional dyke with several columnar rows perpendicular to the dyke wall. RESULTS

Structural data

Regional dykes

A total 88 regional dykes were measured. The average dip and thickness for the different stations is as follows (Table 1). The average dip of the regional dykes is 81^o and the average thickness is 3.2 m. The dip and thickness distributions are shown in Fig 4. The lowest average dip and thickness were observed at station C, which is partly due to occurrence of several inclined sheets at this locality.

Table 1 Statistical results for the regional dykes.

Station	A 10	B 24	C 21	D 23	E 15	F 16
Dip (avg)	75	84	65	79	81	81
Dip (std)	13	6	18	11	90	
Thickness (avg)	4.3	3.7	1.5	2.1	3.6	2.5
Thickness (std)	3.1	2.1	1.1	1.0	2.7	1.4
Max thickness	11.6	8.9	5.0	5.0	9	6.5
Min thickness	0.9	0.7	0.3	0.5	0.4	0.6
Traverse length Dilation %	3250 1.33	10500 0.83	2500 1.32	4500 1.07	3000 1.84	2750 1.48

Fig. 4 Thickness and dip distribution of regional dykes. Note that the distributions are very different from those of the inclined sheets (Fig. 5).

Inclined sheets

A total of 368 inclined sheets gave following dip and thickness variations at the seven stations. The average value for all cone sheets is 45⁰ for dip and 1.0 m for thickness. Histograms of dip and thickness are shown in Fig. 5

Table 2. Statistical results for the inclined sheets.

Station	1	2	3	4	5	6	7
N	49	74	49	102	43	10	47
Dip (avg)	55	38	46	45	56	41	31
Dip (std)	19	18	20	20	20	23	19
Thickness (avg)	1.1	0.8	0.9	1.1	1.1	0.6	0.9
Thickness (std)	0.6	0.6	0.4	1.2	0.6	0.5	0.4
Max thickness	2.9	3.2	1.9	4.0	3.5	1.8	1.6
Min thickness	0.1	0.1	0.2	0.1	0.2	0.1	0.3

Fig. 5 Thickness and dip distribution of inclined sheets. The average dip is about 45°.

Dip (degrees)

Discussion of dip, strike and thickness variations

The variation in dip, strike and thickness of the inclined sheets and regional dykes is discussed in detail by Gautneb¹. For the sake of completeness the most important results are summarized here.

The regional dykes are steeply dipping. The deviation from the vertical can often be attributed to subsequent tilting of the associated lavas. The strike follows the orientation parallel to the extinct volcanic zones. The average thickness of the dykes exceeds that of the inclined sheets by about 2 m.

The inclined sheets show large variation in dip and thickness. The dip variation reflects changes in the stress field during growth of the shallow magma chamber and variation in dimensions of the magma chamber with time (Gautneb <u>et al.²)</u>. The average dip decreases with distance from the caldera centre.

Chemical data

Regional dykes

The regional dykes consists mainly of qz-tholeiites (Fig. 5). One sample classifies as Fe-Ti basalt and two samples as intermediate basaltic-andesites. The regional dykes have a fairly

¹Gautneb H. 1989. Structure of the Reykjadalur sheet swarm. MS submitted to Tectonophysics ²Gautneb H., Gudmundsson A., Oskarsson N. 1989. Structure,

²Gautneb H., Gudmundsson A., Oskarsson N. 1989. Structure, petrochemistry and evolution of a sheet swarm in an Icelandic central volcano. Geological Magazine (in press).

uniform composition. Most regional dykes are qz-normative, only two samples contain 2-4% normative olivine, other samples contain 1-9% normative quartz (Table 4).

The trends show a some scatter (Fig. 7) particularly the alkalis (Na₂O and K₂O) which show large scatter. There is an increase in CaO, V, Cr, Ni, and Cu with increasing MgO/Fe₂O₃t and decrease in Na₂O, K₂O, P₂O₅, Sr, Y, Zr, Nb, Ba, Ce, Nd, and La. Other elements show a random distribution. These trends show increase in incompatible and decrease in compatible elements with evolution. Plagioclase and clinopyroxene fractionation seems to be responsible for most of the variation, with some frationation of magnetite and ilmenite in the most highly evolved samples.

The most primitive regional dyke (sample D11, Table 3) is 4.90 m thick, stands vertically and consists of little altered aphyric basalt at station A. The most evolved dyke basalt (sample D27a, Table 3) is a 0.90 m thick and consists of aphyric (station B). There is no indication of any close chemical resemblance between nearby dykes. For instance, dykes D27a and D 27b are separated by not more than five metres of host basalts but have a difference in MgO of 4 wt%, and very distinct differences in all other elements as well. This indicates that these dykes were formed by very different magmas, probably widely separated in time. If these compositional differences of samples D27a and D27b are representative for other regional dykes they would suggest that individual dykes in a cluster were generated under similar stress conditions but by different source magmas. Fig. 6 MgO/(MgO+FeOt)*100 versus TiO_2 for the regional dykes. Most dykes have composition similar to qz-tholeiite.

Fig. 7 Composition of regional dykes. MgO/Fe203t*100 versus most other elements.

MgO/Fe2O3t

Inclined sheets

The inclined sheets show a greater compositional spread than the regional dykes. The sheets consist mainly of qz-tholeiites, but in Fig. 8 one individual sheet classifies as ol-tholeiite, rhyolite and four sheet as Fe-Ti basalts. Of **the 4**5 one as are olivine normative, and of these 5 have analysed sheets, 20 10% normative olivine. The trends show generally a than more large scatter, in particular the porphyritic sheets which have a considerably higher Al₂O₃ content than the aphyric sheets. The large scatter indicates that there was a great variation in the composition of the source magma, which by all probability was followed by a very inhomogeneous alteration. There is an increase in CaO, Ni, and V, with increasing MgO/Fe₂O₃t (Fig. 9) and decrease in TiO₂, Na₂O, K₂O, P₂O₅, Rb, Y, Zr, Ce, Ba, Nd, and Other elements vary randomly. The inclined sheets show the La. same increase in incompatible elements and decrease in compatible with evolution as the regional dykes. elements. The most primitive inclined sheets (samples 407, 409, 401, sp413, Table 3) occur at stations 2 and 3 in the eastern part of the caldera. Conversely, the most evolved sheets (samples d41, 416, 417, 128) in the central part of caldera. Other sheets occur show no relationship between composition and location. It is not possible to distinguish chemically between other subgroups of sheets.

Fig. 8 MgO/(MgO+FeOt) \star 100 versus TiO₂ for the inclined sheets. Most sheets are qz-tholeiites, but Fe-Ti basalts and rhyolite are also present.

Ti02

Fig. 9 Composition of the inclined sheets.

Fig. 9 continued

<u>Chemical comparison of regional dykes</u> and inclined sheets.

Inclined sheets and regional dykes show the same chemical trends. The scatter, however, is considerably larger for the inclined sheets, which may partly be related to greater alteration and a larger variation in the sheet source magma. There is no significant chemical difference between the inclined sheets and the regional dykes.

The regional dykes were probably derived from a deep-seated magma reservoir beneath the volcanic system of which the Reykjadalur central volcano was a part. Intuitively one might expect the regional dykes to be more primitive than the inclined sheets, because the latter were mainly derived from a shallow magma chamber which may be expected to contain more evolved magmas. One would thus also expect a greater variability in the chemistry of the inclined sheets because of replenishment in the shallow magma chamber.

There are several possible explanations for the observed lack of chemical difference between dykes and inclined sheets.

- Some regional dykes may have been laterally injected from the shallow magma chamber.
- 2. The magma in the deep-seated magma reservoir undergoes fractionation and crustal contamination that may be on the same scale as in the shallow magma chamber so that the composition of magmas in the deepseated reservoir was similar to that of magmas in the shallow magma chamber.

3. The composition of the shallow chamber magmas might also be more diverse due to multiple injections of primary magmas, accompanied by fractionation and crustal contamination. Thus the overall chemical composition of inclined sheets may become indistinguishable from that of the regional dykes.

Isotope and REE analysis are probaly necessary to find any distinct difference between source magmas of the regional dykes and inclined sheets.

SUMMARY AND CONCLUSIONS

This report describes the structure, lithology and chemistry intrusions of of sheet the Reykjadalur central volcano and surrounding areas. Based on lithology and structural differences, intrusions are divided into regional dykes the and inclined The main results can be summarised sheets. as follows: The regional dykes occur as steeply-dipping, relatively thick (3.5 m average) intrusions. They are on average about 1%c of the total rock. The inclined sheets show larger variation in dip and are, on average, about 1.0 m thick. They occur in two contrasting lithological types, aphyric and porphyritic, respectively. The porphyritic sheets comprise about 30 % of the sheets.

Chemical analyses show that the regional dykes are mainly qz-tholeiities, with some Fe-Ti basalts and basaltic andesites. The compositional variation of the inclined sheets is greater than of the regional dykes. Most are qz-tholeiites but ol-tholeiites and rhyolites are also present.

Comparison of inclined sheets and regional dykes shows that there is no statistically significant difference in the chemistry of inclined sheets and regional dykes.

ACKNOWLEDGEMENTS

The author thanks Haukur Johannesson, Museum of Natural History for introduction to the field area, Magne Tysseland, Department of Geology, University of Bergen, Norway for providing access to XRF facilities and Agust Gudmundsson for helpful comments on the manuscript.

ROCK	LOK	S102	Ti02	A1203	Fe203	MnO	MgC	Caû	Na2O	К20	P205	V	CR	CO	NI	CU	ZN	RB	SR	Y	
======								40.50		======	20	===== 0:20	-=	==-=:	= - = -	=	=	==			=
DD	В	50.67	1.69	18.01	11.59	.20	3.9/	10.53	2.54	.49	.30	200	101	4 0	39 12	00 28	120	15	101	. 34 68	
D30 D22	B	JU.D/	2.31	15.29	15.03	- J4 23	2.04	0.00	2.01	. /9	1.0/	360	107	<u>40</u>	1Z 41	124	102	10	108	35	
na	B	40.70	2.07	17 22	13 34	21	3.80	9.71	2.01	.00	50	307	283	45	65	83	102	16	225	▲1	
D-3	R	50 76	2.00	16.17	14 02	.21	4.04	8.88	2.69	. 76	.29	353	63	50	41	124	111	18	184	A 3	
D25	R	A 8.70	1 62	18.24	11.69	.17	5.17	11.56	2.27	.37	.21	265	156	42	76	108	82	12	199	14	
D19	B	48.73	2.24	16.52	13.44	.21	5.09	10.53	2.49	. 42	.33	334	115	46	59	144	95	12	194	37	
D27a	B	52.42	2.28	14.42	16.22	. 42	2.27	6.85	2.82	1.00	1.27	120	57	49	10	0	191	22	237	92	
D21	В	50.04	1.78	18.14	12.03	.20	4.19	10.33	2.37	.48	. 44	230	83	42	31	87	104	13	243	34	
D27b	В	48.17	2.14	15.13	14.11	.20	6.49	10.64	2.51	.36	.25	345	121	51	69	98	91	13	197	31	
D29	В	47.75	2.27	15.18	14.50	.23	5.96	11.22	2.34	.30	.23	370	97	51	58	167	102	13	197	36	
D14	Α	47.60	3.45	15.48	15.97	.28	4.66	8.77	2.82	.44	.53	443	43	55	14	26	128	13	202	46	
b 11	A	47.62	2.25	15.26	13.99	.20	7.38	10.88	1.96	.18	.29	335	270	49	94	118	95	10	196	30	
12a	A	47.86	2.14	16.71	12.94	.23	6.62	11.34	1.64	.20	.33	314	106	44	61	137	88	14	222	25	
355	С	47.09	1.87	15.73	14.06	.20	8.14	10.55	1.85	.22	.28	283	164	52	114	92	98	12	203	31	
D334	D	47.42	2.05	18.26	12.99	.21	4.28	12.36	1.88	.33	.21	314	85	45	4/	106	89	14	247	21	
320	D	50.26	2.86	15.68	14.58	.20	3.91	8.45 0.66	2.92	.59	.49	309	45	4ð	19	155	130	18	100	60 27	
254	D E	49.33	2.45	21 05	14.91	15	4.00	9.00	2.79	+54	- 34 28	409	55 67	36	38	100	112	14	240	20	
721	r R	49.05	1.09	15 84	13 30	20	5.29 6.42	10.86	1 04	.30	26	312	190	J0 ▲7	30 80	113	88	15	198	14	
D41	1	48.34	2.94	15.25	16.31	.26	3.94	9.76	2.34	. 45	.40	422	72	54	38	108	123	18	188	47	
470	2	47.47	2.32	14.30	17.27	.31	5.24	10.21	1.50	1.13	. 25	417	56	58	28	147	107	21	152	37	
SP406	2	49.99	1.51	16.68	13.23	,20	5.21	10.19	1.73	.98	.28	263	55	46	61	124	80	17	203	31	
469	2	49.32	2.09	15.98	13.84	.20	5.60	9.94	2.19	.48	.35	345	73	50	46	151	81	26	220	34	
SP468	2	48.16	1.48	17.05	12.38	.19	6.91	10.99	2.10	.54	.21	272	16	45	96	146	111	15	260	23	
SP408	2	48.39	2.01	14.14	14.59	.22	6.66	11.01	2.31	.37	، 30	296	543	49	88	102	106	12	188	39	
sp404	2	47.37	1.21	20.76	9.94	.14	5.34	13.04	1.75	.28	.17	211	97	34	55	100	58	12	273	12	
SP465	2	46.88	1.69	14.33	14.73	.22	8.62	11.04	1.63	.63	.23	266	83	43	57	0	75	16	215	30	
SP464	2	47.64	1.26	21.82	9.18	.13	4.45	13.41	1.66	.26	.20	209	51	32	40	108	53	12	274	15	
SP407	2	46.19	1.93	14.24	15.36	.24	7.83	11.70	1.76	•54	.21	311	223	50	102	100	131	18	197	34	
402	2	47.38	2.69	11.35	15.63	.30	7.94	12.91	1.05	.39	.3/	398	119	50	51	111	111	14	204	42	
405	2	44.44	1.91	13.75	15.09	.23	0.00	14.29	1.25	.14	.24	319	282	49	94	14Z	11/	11	1/8	30	
CDA17	년 - 1	41.14	2 47	15 50	16 60	•11 27	J.4/	13.32	1.55	.20	.15	1/4	55	20	40	134	117	20	171	¥3	
25411 16	-	47.57 A8 8A	2.47	15.30	15.66	.21	4.68	9.21	1 22	1 22	59	268	73	↓ 7	13	22	143	20	202	4 0 70	
SP412	4	43.17	1.63	14.30	13.77	.20	7.94	11.25	1.86	. 48	.39	265	101	48	67	133	93	16	190	30	
388	4	47.44	1.62	13.92	13.99	.20	9.02	11.98	1.40	.17	.28	263	230	50	137	106	82	12	157	22	
418	4	47.93	1.51	18.50	11.47	.16	5.57	12.23	2.08	.37	.17	255	69	39	54	112	85	13	239	20	
128	4	47.26	3.91	14.98	17.56	.31	3.96	9.14	2.08	.30	.51	461	939	58	81	31	153	15	211	43	
401	4	45.95	2.17	14.46	15.47	.24	7.44	11.58	1.86	.56	.27	342	86	52	67	126	119	16	195	32	
414	4	45.00	3.37	14.22	18.16	.30	6.07	9.85	1.46	1.00	.57	416	188	57	41	109	165	19	151	53	
420	4	48.35	2.09	15.45	14.63	.22	6.13	10.08	2.10	.61	.35	347	80	52	49	161	103	15	230	31	
SP413	4	46.77	2.22	13.80	14.91	.23	8.18	11.17	2.16	.27	.29	355	80	52	54	116	155	14	202	29	
420	4	48.11	2.10	15.32	14,43	.22	6.43	9.99	2.48	.61	.31	346	53	53	50	159	101	13	230	38	
SP458	6	46.71	2.75	14.99	16.86	.26	5.39	9.45	2.59	.66	.34	429	50	60	28	159	159	15	1/2	36	
5P463	6	48.59	1.2/	18.05	11.03	.15	b.18	11.96	2.09	.41	.28	225	103	39 50	12 57	119	00	10	230	19	
401	6	40.19	2.60	10.04	14.14	.13	5.4U	10.41	1.90	.09	. 30	324	102	50	63 51	110	9Z	15	104	20	
spag1 sp462	6	40.75	2.00 1 48	20 37	10.07	16	4 31	11 22	2 13	-00 54	23	253	125	37	۵0 ۸۵	115	80	16	270	18	
SP460	6	48 62	2 15	16.09	14.63	.23	5.38	9.25	2.20	1.05	. 41	344	72	50	39	111	127	21	209	32	
SP456	6	48.63	2.42	15.25	13.73	. 44	6.38	10.30	1.93	.51	. 42	350	91	44	45	100	153	15	203	36	
185	6	43.27	4.02	15.31	17.58	.23	6.71	10.45	2.12	.16	.17	230	210	62	47	199	105	11	181	10	
249	6	46.59	3.62	14.28	17.35	.27	5.31	9.92	1.42	.51	.74	291	52	52	8	0	176	14	183	68	
423	7	48.51	1.85	15.22	12.73	.18	6.95	12.01	1.93	.33	.27	303	137	46	77	132	80	13	194	24	
429	7	48.35	2.90	15.27	16.54	.31	3.82	9.49	2.35	.59	.39	428	257	55	92	156	114	17	202	32	
SP421	7	49.93	1.34	22.82	8.43	.12	2.84	11.47	2.06	.81	.20	195	38	29	24	67	62	17	263	26	
444	7	48.54	2.51	15.71	14.74	.26	4.57	10.13	2.66	.53	.34	380	46	51	39	135	112	14	192	43	
445	7	45.99	2.76	13.28	15.30	.23	7.50	12.91	1.36	.28	.38	370	219	49	83	137	135	12	221	45	
347	F	49.22	2.47	15.99	14.17	.23	4.26	10.34	2.55	. 44	.33	352	86	49	46	119	114	17	197	40	
390	3	48.61	1.91	11.83	12.90	.17	12.24	10.20	1.36	.50	.29	242	857	4/	316	/5	400	11	223	21	
KD1		13.39	.25	13.03	3.15	• Ub	.81	1.24	3,92	2.09	.04	ΖŬ	23	10	Q	29	173	30	55	100	

ROCK	ZR	NB	BA	Ce	Nd	La	MgFe
D6	151	27	118	37	24	14	34.24
D30	493	34	155	70	45	29	18.88
D22	134	24	110	42	23	18	27.59
D9	169	27	113	44	28	14	28.44
DЗ	185	27	122	43	24	19	28.78
D25	84	24	69	26	14	9	44.18
D19	119	18	72	32	17	15	37.86
D27a	397	44	273	88	88	40	14.02
D21	146	28	85	38	20	14	34.80
D27b	112	10	16	28	16	6	46.02
D29	121	21	51	30	19	11	41.10
D14	151	26	94	44	23	19	29.20
D11	109	13	43	30	1/	10	52.72
12a	/8	21	45	27	1/	13	51.12
355	88	20	1/	29	10	10	27.90
D334	070	20	102	20	14	12	JZ.94
320	2/9	20	140 7/i	20	22 22	10	20.00
254	140	12	/4 55	42	16	15	31 02
221	01 79	10	102	33	10	10	67 93
D00	156	15 24	0A	38	22	15	24 15
1041 ∆70	121	27	54	26	18	12	30.34
SP406	120	25	127	34	17	9	39.40
469	141	20	:08	35	22	16	40.44
SP468	90	17	49	25	17	8	55.87
SP408	167	24	101	37	19	10	45.63
sp404	61	19	35	14	9	8	53.75
SP465	111	23	95	25	16	9	58.53
SP464	66	18	50	25	14	8	48.50
SP407	113	22	101	34	16	10	50.97
402	153	24	42	32	19	11	50.81
409	121	22	11	24	11	8	57.40
SP411	45	15	41	20	8	9	43.55
SP417	154	2 2	151	41	24	17	29.20
416	297	35	204	60	40	29	29.87
SP412	123	17	112	31	19	13	57.64
388	94	18	11	30	14	10	64.45
418	73	19	57	26	12	8	48.58
128	160	31	65	42	27	15	22.55
401	122	20	94	51	20	11	48.07
414	260	39	185	53	34	10	33,41
420	124	22	00	24	10	10	41,92
5F413	120	32 20	100	37	20	15	54.07 66 57
420 CD459	120	20	105 61	20	18	11	21 47
SP459	324 7n	18	9G	28	11	8	56.03
461	105	7 <u>0</u>	78	31	19	10	38,19
50457	122	30	89	31	16	11	38.25
sp462	82	17	81	25	11	8	39.33
SP460	135	27	103	40	21	15	36.76
SP456	148	28	93	39	19	17	46.46
185	34	16	15	11	4	4	38.15
249	272	36	143	63	36	28	30.58
42 3	94	18	29	25	10	10	54.60
429	137	22	112	39	23	17	23.12
SP421	142	19	87	34	16	14	33.72
444	160	21	95	36	23	15	31.01
445	160	28	31	36	18	17	49.01
347	152	24	81	34	22	15	30.09
390	143	24	68	38	18	17	94.83
RD1	529	68	456	145	76	79	21.74

Table 3 continued

Rock	0	С	Or	Ab	An	Mg-di	Fe-di	En	Fs	Fo	Fa	Mt	[]	Ap
D6	3.71	0	2.95	21.75	36.65	5.62	6.20	7.38	9.33	0	0	4.67	3.25	.71
D30	7.20	0	4.67	23.78	26.80	1.25	2.50	6.49	14.85	0	0	6.00	4.39	3.72
D22	1.42	0	3.55	23.61	30.86	4.77	6.11	7.52	11.05	0	0	5.65	5.03	1.14
D9	1.63	0	3.96	24.20	32.22	4.71	5.95	7.28	10.53	0	0	5.33	4.48	1.18
D3	3.91	0	4.49	22.85	29.89	4.55	5.85	7.97	11.76	0	0	5.61	4.18	.69
D25	.22	0	2.19	19.29	38.77	7.82	6.73	9.32	9.20	0	0	4.69	3.10	.50
D19	. 76	0	2.42	20.56	31.81	7.19	6.92	9.02	9.96	0	0	5.22	4.14	.76
D27a	9.46	0	5.61	22.68	22.55	.42	1.16	5.18	16.39	0	0	6.14	4.12	2.87
D21	3.76	0	2.84	20.14	37.56	4.39	4.74	8.42	10.44	0	0	4.81	3.40	1.04
D27b	0	0	2.13	21.15	28.86	10.08	8,16	8.28	7.68	2.22	2.27	5.61	4.05	.59
D33	1.08	0	2.60	15.99	32.29	8.56	6.70	11.59	10.41	0	0	5.20	3.67	.59
D29	0	0	1.77	19.55	29.67	10.38	9.37	7.86	8.14	1.40	1.59	5.71	4.25	.54
D14	.80	0	2.60	23.94	28.37	4.58	5.29	9.53	12.63	0	0	6.39	6.57	1.26
D11	0	0	1.00	15.91	31.03	9.16	6.38	12.68	10.13	.49	.43	5.35	4.10	.66
12a	1.68	0	1.12	13.37	36.39	7.59	5.44	12.39	10.19	0	0	4.98	3.93	.76
D41	3.11	0	2.60	19.29	28.93	5.30	7.84	7.08	12.00	0	0	6.32	5.43	.92
470	1.08	0	6.32	11.93	27.29	6.99	8.86	9.06	13.18	0	0	6.49	4.16	.57
SP406	3.41	0	5.55	13.96	33.31	5.50	5.51	9.85	11.32	0	0	5.04	2.73	.64
469	2.49	0	2.84	18.36	32.01	6.26	5.78	10.89	11.52	0	0	5.46	3.93	.83
SP468	0	0	3.07	17.26	34.46	8.27	5.79	9.09	7.30	2.65	2.35	4.79	2.73	.47
SP408	0	0	2.07	18.28	25.31	10.76	8.99	8.93	8.56	1.10	1.16	5.43	3.57	.66
sp404	0	0	1.60	14.47	47.00	7.26	5.27	7.76	6.46	1.32	1.21	3.88	2.24	.40
SP465	0	0	3.49	12.86	27.86	10.67	7.19	8.37	6.47	4.68	3.99	5.47	2.98	.50
SP464	.64	0	1.54	14.30	52.11	6.54	5.13	8.22	7.40	0	0	3.72	2.43	.47
SP407	0	0	2.90	13.45	26.56	11.54	8.79	4.82	4.21	5.23	5.04	5.54	3.32	.45
402	1.73	0	2.19	8.38	23.77	16.53	11.84	11.03	9.06	0	0	5.89	4.82	.83
409	0	0	.77	9.73	28.89	17.02	11.50	.94	.72	7.69	6.56	5.52	3.32	.52
SP411	2,03	0	1.18	13.11	59.93	2.64	2.32	7.52	7.59	0	0	3.21	2.03	.31
SP417	1.41	0	6.09	14.30	29.05	4.13	5.31	9.47	13.96	0	0	6.24	4.41	1.02
416	5.80	0	6.74	9.65	30.53	3.81	4.66	9.11	12.77	0	0	5.83	4.71	1.30
SP412	0	0	2.72	15.06	27.90	11.22	7.62	11.29	8.80	1.67	1.43	5.24	2.96	.88
388	0	0	.95	11.17	29.48	12.69	7.74	13.02	9.11	1.62	1.25	5.27	2.91	.62
418	0	0	2.13	17.26	39.33	8.79	6.95	7.38	6.69	1.52	1.52	4.49	2.81	.40
128	4.63	0	1.71	17.09	29.72	3.75	5.54	7.82	13.28	0	0	6.79	7.20	1.16
401	0	0	3.13	14.81	27.66	11.39	9.00	4.40	3.99	5.41	5.41	5.80	3.87	.59
390	0	0	2.78	10.83	23.34	13.13	5.17	18.99	8.59	2.58	1.29	4.86	3.42	.64
414	0	0	5.50	11.42	27.18	5,94	6.30	9.99	12.15	.89	1.20	6.72	5.94	1.26
420	. 45	0	3.43	17.01	29.54	7.00	6.31	11.34	11.73	0	0	5.57	3.80	.78
SP413	0	0	1.54	17.60	26.21	12.38	8.46	6.43	5,04	5.24	4.52	5.73	4.06	.66
420	0	0	3.49	20.39	28.01	8.13	6.87	8.38	8.11	2.38	2.54	5.58	3.87	.71
SP458	0	0	3.72	20.98	26.24	6.44	7.38	5.94	7.81	2.77	4.01	6.45	5.01	.78
SPARS	0	0	2.36	17.43	38.11	8,95	6.28	9.52	7.66	1.05	.93	4.33	2.37	.66
461	.70	0	5.14	15.74	33.28	6.28	6.23	10.26	11.67	0	0	5.52	3.68	.81
90457	0	0	3.78	15.15	29.64	7.57	7.25	10.36	11.39	. 68	. 82	6.21	4.79	.88
sp462	. 97	0	3.13	17.68	43.51	4.00	3,89	8.65	9.65	0	0	4.28	2.75	.54
SP460	.65	0	5.97	17.94	29.88	4,86	4.97	10.67	12.51	0	0	5.63	3.95	.95
SP456	2.03	0	2.95	15.99	30,69	7.59	6.05	11.99	10.96	0	0	5.35	4.48	.97
185	0	0	. 89	17.35	30.76	8,17	7.00	3.22	3.16	6.42	6.95	6.78	7.39	.38
249	4.27	0	2.84	11.42	29.52	4.99	5.55	10.24	13.07	0	0	6.57	6.53	1.66
355	0	0	1.24	15.31	33.17	7.98	5.28	12.15	9.22	2.77	2.31	5.47	3.48	.64
423	. 03	0	1.95	16.33	31.81	12.60	8.67	11.44	9.03	0	0	5.07	3.51	.64
429	2.87	0	3.31	18.95	28.07	4.75	7.44	6.88	12.36	0	0	6.30	5.26	.88
SP421	3 73	0	4.85	17.68	51.50	2.01	2.19	6.26	7.85	0	0	3.42	2.58	. 47
ΔΛΛ	52	Ő	3.13	22.34	29.15	7.13	8.37	8.00	10.77	0	0	5.84	4.73	. 81
445	.52	0	1 60	11 00	.27 97	14 69	10.68	9.26	7.72	1.23	1.13	5.83	5.01	. 85
0334	۵۵	0	1 80	15.57	39 58	7.60	8.42	6.96	8.97	0	0	5.07	3.82	.50
320	.50 ۵ ۱ ۲	0	3.40	24.71	27 88	3 03	5.11	7.91	11.70	0	Ő	5.81	5.43	1,16
334	1 72	0	3.25	24 03	27.02	7.08	8.53	8.22	11.36	0	0	6.06	4.75	,83
351	3 07	0	2 07	17 77	Δ5 75	3 13	3,77	6.57	9.07	0	ñ	4,14	2,96	.64
347	2 40	0	2 60	21 61	30 65	6.88	8,25	7.34	10.09	0	0	5,61	4,65	.78
RD1	33.09	1.86	16.78	32.58	5.79	0.00	0	1.99	4.44	0	0	1.47	.47	.09
15 M L		- • UU	10010	02.00	0.10	0	0		****	J	~			

Table 4 Normative composition of sheets and dykes calculated with fixed Fe2O3/FeO ratio of 0.15 $\,$